f(x)=x2.f(x)=x^2.f(x)=x2. Its a continuous function. Now if it satisfies Lipschitz condition, then ∣f(x)−f(y)∣≤k∣x−y∣|f(x)-f(y)|\leq k|x-y|∣f(x)−f(y)∣≤k∣x−y∣ for some k>0.k>0.k>0. We take x=2k,y=0x=2k, y=0x=2k,y=0 . Then ∣f(x)−f(y)∣=∣x2−y2∣=∣x+y∣∣x−y∣=2k∣x−y∣>k∣x−y∣|f(x)-f(y)|=|x^2-y^2|=|x+y||x-y|=2k|x-y|>k|x-y|∣f(x)−f(y)∣=∣x2−y2∣=∣x+y∣∣x−y∣=2k∣x−y∣>k∣x−y∣ . Hence doesn't stisfy Lipschitz condition.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments