1. Rewrite the equation:
y′=y2+2ydxdy=y2+2yy2+2ydy=dx(y2+2y+1)−1dy=dx(y+1)2−1dy=dx
Integrate both parts of the equation:
∫(y+1)2−1dy=∫dx21ln∣y+2y∣=x+Cln∣y+2y∣=2x+Cy+2y=e2x+Cy=e2x+Cy+2e2x+Cy(1−2e2x+C)=2e2x+Cy=1−2e2x+C2e2x+C
Substitute y=3, x=0:
3=1−2eC2eC2eC=3−6eC8eC=3eC=83 Hence
y=1−2⋅83e2x2⋅83e2xy=1−43e2x43e2xy=4−3e2x3e2x 2. Rewrite the equation:
(dxdy)2=1−x21−y2dxdy=1−x21−y21−y2dy=1−x2dx Integrate both parts of the equation:
∫1−y2dy=∫1−x2dxarcsiny=arcsinx+C Since y=21,x=1, then
arcsin21=arcsin1+CC=6π−2π=−3π Hence
arcsiny=arcsinx−3πy=sin(arcsinx−3π)y=xcos3π−sin3πcos(arcsinx)y=2x−23⋅1−x2y=21(x−3−3x2) 3. Rewrite the equation:
xeydy=−yx2+1dxxyeydy=−(x2+1)dxyeydy=−xx2+1dxyeydy=−(x+x1)dx Integrate both parts of the equation:
∫yeydy=−∫(x+x1)dxyey−ey=−2x2+lnx+Cey(y−1)=−2x2+lnx+C
Comments