Question #137931
1. y'-2y=y^2 ;y=3 when x=0
2. (y')^2=(1-y^2)/(1-x^2); y=1/2 when x=1
3. x(e^y)dy+((x^2)+1dx)/y=0
1
Expert's answer
2020-10-12T18:58:33-0400

1. Rewrite the equation:


y=y2+2yy' = y^2 +2ydydx=y2+2y\frac{dy}{dx}=y^2+2ydyy2+2y=dx\frac{dy}{y^2+2y}=dxdy(y2+2y+1)1=dx\frac{dy}{(y^2+2y+1)-1}=dxdy(y+1)21=dx\frac{dy}{(y+1)^2-1}=dx


Integrate both parts of the equation:


dy(y+1)21=dx\int \frac{dy}{(y+1)^2-1}= \int dx12lnyy+2=x+C\frac{1}{2} ln |\frac{y}{y+2}| =x+Clnyy+2=2x+Cln |\frac{y}{y+2}| =2x+Cyy+2=e2x+C\frac{y}{y+2}=e^{2x+C}y=e2x+Cy+2e2x+Cy=e^{2x+C}y+2e^{2x+C}y(12e2x+C)=2e2x+Cy(1-2e^{2x+C})=2e^{2x+C}y=2e2x+C12e2x+Cy=\frac{2e^{2x+C}}{1-2e^{2x+C}}

Substitute y=3, x=0:


3=2eC12eC3 = \frac{2e^C}{1-2e^C}2eC=36eC2e^C =3-6e^C8eC=38e^C =3eC=38e^C =\frac{3}{8}

Hence


y=238e2x1238e2xy= \frac{2 \cdot \frac{3}{8}e^{2x}}{1-2 \cdot \frac{3}{8}e^{2x}}y=34e2x134e2xy= \frac{ \frac{3}{4}e^{2x}}{1-\frac{3}{4}e^{2x}}y=3e2x43e2xy= \frac{ 3e^{2x}}{4-3e^{2x}}

2. Rewrite the equation:


(dydx)2=1y21x2(\frac{dy}{dx})^2 =\frac{1-y^2}{1-x^2}dydx=1y21x2\frac{dy}{dx}=\frac{\sqrt{1-y^2}}{\sqrt{1-x^2}}dy1y2=dx1x2\frac{dy}{\sqrt{1-y^2}}=\frac{dx}{\sqrt{1-x^2}}

Integrate both parts of the equation:


dy1y2=dx1x2\int \frac{dy}{\sqrt{1-y^2}}=\int \frac{dx}{\sqrt{1-x^2}}arcsiny=arcsinx+Carcsin y = arcsin x +C

Since y=12,x=1,y = \frac{1}{2}, x = 1, then


arcsin12=arcsin1+Carcsin \frac{1}{2} = arcsin {1} +CC=π6π2=π3C = \frac{\pi}{6}-\frac{\pi}{2} =-\frac{\pi}{3}

Hence


arcsiny=arcsinxπ3arcsin y = arcsin x -\frac{\pi}{3}y=sin(arcsinxπ3)y = sin ( arcsin x -\frac{\pi}{3})y=xcosπ3sinπ3cos(arcsinx)y = x cos \frac{\pi}{3}-sin \frac{\pi}{3} cos (arcsin x)y=x2321x2y = \frac{x}{2}-\frac{\sqrt {3}}{2}\cdot \sqrt {1-x^2}y=12(x33x2)y = \frac{1}{2}(x- \sqrt {3-3x^2})

3. Rewrite the equation:


xeydy=x2+1ydxx e^y dy = -\frac{x^2+1}{y}dxxyeydy=(x2+1)dxxy e^y dy = -(x^2+1)dxyeydy=x2+1xdxy e^y dy = -\frac{x^2+1}{x}dxyeydy=(x+1x)dxy e^y dy = -(x+\frac{1}{x})dx

Integrate both parts of the equation:


yeydy=(x+1x)dx\int{y e^y dy} = -\int (x+\frac{1}{x})dxyeyey=x22+lnx+Cy e^y -e^y = -\frac{x^2}{2}+ln x+Cey(y1)=x22+lnx+Ce^y(y-1)= -\frac{x^2}{2}+ln x+C






Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS