Given differential equation is
xzdx+zydy=(x2+y2)dz
z(xdx+ydy)=(x2+y2)dz
x2+y2xdx+ydy=zdz .....(1)
let x2+y2=t
2xdx+2ydy=dt
Substitute in equation 1
21tdt=zdz
Integrating Both the side
21∫tdt=∫zdz
21logt=logz+logc
logt21=logzc
t21=zc
(x2+y2)21=zc
Comments