Given differential equation is
"xzdx+zydy=(x^2+y^2)dz"
"z(xdx+ydy)=(x^2+y^2)dz"
"\\frac{xdx+ydy}{x^2+y^2}=\\frac{dz}{z}" .....(1)
let "x^2+y^2=t"
2xdx+2ydy=dt
Substitute in equation 1
"\\frac{1}{2}\\frac{dt}{t}=\\frac{dz}{z}"
Integrating Both the side
"\\frac{1}{2}\\int\\frac{dt}{t}=\\int\\frac{dz}{z}"
"\\frac{1}{2}logt=logz+logc"
logt"^\\frac{1}{2}=logzc"
"t^\\frac{1}{2}=zc"
"(x^2+y^2)^\\frac{1}{2}=zc"
Comments
Leave a comment