Question #133421
(xz)dx+(zy)dy=(x^2+y^2)dz
1
Expert's answer
2020-09-16T19:31:28-0400

Given differential equation is

xzdx+zydy=(x2+y2)dzxzdx+zydy=(x^2+y^2)dz


z(xdx+ydy)=(x2+y2)dzz(xdx+ydy)=(x^2+y^2)dz


xdx+ydyx2+y2=dzz\frac{xdx+ydy}{x^2+y^2}=\frac{dz}{z} .....(1)


let x2+y2=tx^2+y^2=t

2xdx+2ydy=dt


Substitute in equation 1

12dtt=dzz\frac{1}{2}\frac{dt}{t}=\frac{dz}{z}

Integrating Both the side

12dtt=dzz\frac{1}{2}\int\frac{dt}{t}=\int\frac{dz}{z}


12logt=logz+logc\frac{1}{2}logt=logz+logc


logt12=logzc^\frac{1}{2}=logzc

t12=zct^\frac{1}{2}=zc



(x2+y2)12=zc(x^2+y^2)^\frac{1}{2}=zc



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS