To solve differential equation ( x + y ) ( p + q ) 2 + ( x − y ) ( p − q ) 2 = 1 (x+y)(p+q)^2+(x-y)(p-q)^2 = 1 ( x + y ) ( p + q ) 2 + ( x − y ) ( p − q ) 2 = 1
Let us put x + y = X 2 x+y = X^2 x + y = X 2 and x − y = Y 2 x-y = Y^2 x − y = Y 2
then
p = ∂ z ∂ x = ∂ z ∂ X ∂ X ∂ x + ∂ z ∂ Y ∂ Y ∂ x = 1 2 X ∂ z ∂ X + 1 2 Y ∂ z ∂ Y p = \frac{\partial z}{\partial x} = \frac{\partial z}{\partial X}\frac{\partial X}{\partial x}+ \frac{\partial z}{\partial Y}\frac{\partial Y}{\partial x} = \frac{1}{2X}\frac{\partial z}{\partial X}+ \frac{1}{2Y}\frac{\partial z}{\partial Y} p = ∂ x ∂ z = ∂ X ∂ z ∂ x ∂ X + ∂ Y ∂ z ∂ x ∂ Y = 2 X 1 ∂ X ∂ z + 2 Y 1 ∂ Y ∂ z
q = ∂ z ∂ y = ∂ z ∂ X ∂ X ∂ y + ∂ z ∂ Y ∂ Y ∂ y = 1 2 X ∂ z ∂ X − 1 2 Y ∂ z ∂ Y q = \frac{\partial z}{\partial y} = \frac{\partial z}{\partial X}\frac{\partial X}{\partial y}+ \frac{\partial z}{\partial Y}\frac{\partial Y}{\partial y} = \frac{1}{2X}\frac{\partial z}{\partial X}- \frac{1}{2Y}\frac{\partial z}{\partial Y} q = ∂ y ∂ z = ∂ X ∂ z ∂ y ∂ X + ∂ Y ∂ z ∂ y ∂ Y = 2 X 1 ∂ X ∂ z − 2 Y 1 ∂ Y ∂ z
Then
p + q = 1 X ∂ z ∂ X p+q = \frac{1}{X}\frac{\partial z}{\partial X} p + q = X 1 ∂ X ∂ z
and
p − q = 1 Y ∂ z ∂ Y p-q = \frac{1}{Y}\frac{\partial z}{\partial Y} p − q = Y 1 ∂ Y ∂ z
Now substitute it in the equation, then we get
( ∂ z ∂ X ) 2 + ( ∂ z ∂ Y ) 2 = 1 (\frac{\partial z}{\partial X } )^2 + (\frac{\partial z}{\partial Y } )^2 = 1 ( ∂ X ∂ z ) 2 + ( ∂ Y ∂ z ) 2 = 1
Complete integral of the equation is
z = a X + b Y + c z = aX+bY+c z = a X + bY + c where a 2 + b 2 = 1 a^2 + b^2 = 1 a 2 + b 2 = 1
Put value of X and Y, we get
z = a ( x + y ) + 1 − a 2 ( x − y ) + c z = a\sqrt{(x+y)} + \sqrt{1-a^2}\sqrt{(x-y)} + c z = a ( x + y ) + 1 − a 2 ( x − y ) + c
where a and c are arbitrary constants.
Comments