Question #132267


Find the z – transform of z(cos tita) and z(sin tita)


1
Expert's answer
2020-09-16T17:46:19-0400

since

cosθ=realpartofeiθcos\theta=real \, part\, of \,e^{i\theta}

sinθ\theta =Imaginary part of eiθe^{i\theta}


let calculate z-transform of eiθe^{i\theta}

Z{eiθe^{i\theta} }= zzeiθ\frac{z}{z-e^{i\theta}}


=zzcosθisinθ\frac{z}{z-cos\theta-isin\theta}

=zzcosθisinθ×zcosθ+isinθzcosθ+isinθ\frac{z}{z-cos\theta-isin\theta}\times \frac{z-cos\theta+isin\theta}{z-cos\theta+isin\theta}


=z(zcosθ)+izsinθ(zcosθ)2i2sin2θ\frac{z(z-cos\theta)+izsin\theta}{(z-cos\theta)^2-i^2sin^2\theta}


=z(zcosθ)+izsinθ(z2+cos2θ2zcosθ+1sin2θ\frac{z(z-cos\theta)+izsin\theta}{(z^2+cos^2\theta-2zcos\theta+1sin^2\theta}


=z(zcosθ)+izsinθ(z2+12zcosθ)\frac{z(z-cos\theta)+izsin\theta}{(z^2+1-2zcos\theta)}


on separating real and imaginary parts we get,


we get

Z(cosθ)=z(zcosθ)(z2+12zcosθ)Z( {cos\theta}) =\frac{z(z-cos\theta)}{(z^2+1-2zcos\theta)}


Z(sinθ)=zsinθ(z2+12zcosθ)Z(sin\theta)=\frac{zsin\theta}{(z^2+1-2zcos\theta)}




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS