since
cosθ=realpartofeiθ
sinθ =Imaginary part of eiθ
let calculate z-transform of eiθ
Z{eiθ }= z−eiθz
=z−cosθ−isinθz
=z−cosθ−isinθz×z−cosθ+isinθz−cosθ+isinθ
=(z−cosθ)2−i2sin2θz(z−cosθ)+izsinθ
=(z2+cos2θ−2zcosθ+1sin2θz(z−cosθ)+izsinθ
=(z2+1−2zcosθ)z(z−cosθ)+izsinθ
on separating real and imaginary parts we get,
we get
Z(cosθ)=(z2+1−2zcosθ)z(z−cosθ)
Z(sinθ)=(z2+1−2zcosθ)zsinθ
Comments