Find the z – transform of z(cos tita) and z(sin tita)
since
"cos\\theta=real \\, part\\, of \\,e^{i\\theta}"
sin"\\theta" =Imaginary part of "e^{i\\theta}"
let calculate z-transform of "e^{i\\theta}"
Z{"e^{i\\theta}" }= "\\frac{z}{z-e^{i\\theta}}"
="\\frac{z}{z-cos\\theta-isin\\theta}"
="\\frac{z}{z-cos\\theta-isin\\theta}\\times \\frac{z-cos\\theta+isin\\theta}{z-cos\\theta+isin\\theta}"
="\\frac{z(z-cos\\theta)+izsin\\theta}{(z-cos\\theta)^2-i^2sin^2\\theta}"
="\\frac{z(z-cos\\theta)+izsin\\theta}{(z^2+cos^2\\theta-2zcos\\theta+1sin^2\\theta}"
="\\frac{z(z-cos\\theta)+izsin\\theta}{(z^2+1-2zcos\\theta)}"
on separating real and imaginary parts we get,
we get
"Z( {cos\\theta}) =\\frac{z(z-cos\\theta)}{(z^2+1-2zcos\\theta)}"
"Z(sin\\theta)=\\frac{zsin\\theta}{(z^2+1-2zcos\\theta)}"
Comments
Leave a comment