Question #132209
Solve: (3ydx - 2xdy) + x^2y^-1(10ydx - 6xdy)=0
1
Expert's answer
2020-09-10T18:25:42-0400

(3ydx2xdy)+x2y1(10ydx6xdy)=0(3ydx - 2xdy) + x^2y^{-1}(10ydx - 6xdy)=0

y(3ydx2xdy)+x2(10ydx6xdy)=0y(3ydx - 2xdy) + x^2(10ydx - 6xdy)=0

(3y2+10x2y)dx(2xy+6x3)dy=0(3y^2+10x^2y)dx-(2xy+6x^3)dy=0

y(3y+10x2)dx2x(y+3x2)dy=0y(3y+10x^2)dx-2x(y+3x^2)dy=0

y(3y+10x2)(2xdx)4x2(y+3x2)dy=0y(3y+10x^2)(2xdx)-4x^2(y+3x^2)dy=0

t=x2,dt=2xdxt=x^2, dt=2xdx

y(3y+10t)dt4t(y+3t)dy=0y(3y+10t)dt-4t(y+3t)dy=0

dydt=y(3y+10t)4t(y+3t)\frac{dy}{dt}=\frac{y(3y+10t)}{4t(y+3t)}

This is an ODE of the homogeneous kind.

y=tu,dydt=u+tdudty=tu, \frac{dy}{dt}=u+t\frac{du}{dt}

Then:

u+tdudt=tu(3tu+10t)4t(tu+3t)=u(3u+10)4(u+3)u+t\frac{du}{dt}=\frac{tu(3tu+10t)}{4t(tu+3t)}=\frac{u(3u+10)}{4(u+3)}

tdudt=u(3u+10)4(u+3)u=3u2+10u4u2124(u+3)=u2+10u124(u+3)t\frac{du}{dt}=\frac{u(3u+10)}{4(u+3)}-u=\frac{3u^2+10u-4u^2-12}{4(u+3)}=\frac{-u^2+10u-12}{4(u+3)}

4(u+3)u210u+12du=dtt-\int\frac{4(u+3)}{u^2-10u+12}du=\int\frac{dt}{t}

213((13+813)ln(u+13+5)+(13813)ln(u+135))=lnu+c-\frac{2}{13}((13+8\sqrt{13})ln(-u+\sqrt{13}+5)+(13-8\sqrt{13})ln(u+\sqrt{13}-5))=ln|u|+c

u=y/x2u=y/x^2

Answer:

213((13+813)ln(y/x2+13+5)+(13813)ln(y/x2+135))=-\frac{2}{13}((13+8\sqrt{13})ln(-y/x^2+\sqrt{13}+5)+(13-8\sqrt{13})ln(y/x^2+\sqrt{13}-5))=

=lny/x2+c=ln|y/x^2|+c


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS