(3ydx−2xdy)+x2y−1(10ydx−6xdy)=0
y(3ydx−2xdy)+x2(10ydx−6xdy)=0
(3y2+10x2y)dx−(2xy+6x3)dy=0
y(3y+10x2)dx−2x(y+3x2)dy=0
y(3y+10x2)(2xdx)−4x2(y+3x2)dy=0
t=x2,dt=2xdx
y(3y+10t)dt−4t(y+3t)dy=0
dtdy=4t(y+3t)y(3y+10t)
This is an ODE of the homogeneous kind.
y=tu,dtdy=u+tdtdu
Then:
u+tdtdu=4t(tu+3t)tu(3tu+10t)=4(u+3)u(3u+10)
tdtdu=4(u+3)u(3u+10)−u=4(u+3)3u2+10u−4u2−12=4(u+3)−u2+10u−12
−∫u2−10u+124(u+3)du=∫tdt
−132((13+813)ln(−u+13+5)+(13−813)ln(u+13−5))=ln∣u∣+c
u=y/x2
Answer:
−132((13+813)ln(−y/x2+13+5)+(13−813)ln(y/x2+13−5))=
=ln∣y/x2∣+c
Comments