As per the question ,
Given differential equation is
"2sin(y^2)dx+xycos(y^2)dy=0"
Using seperation of variable method,
xy"cos(y^2)" "dy=-2sin(y^2)dx"
"\\frac{ycos(y^2)}{sin(y^2)}dy=-\\frac{2}{x}dx"
Integrating both the side "\\int ycot(y^2)dy=-\\int \\frac{2}{x}dx" ....(1)
let y"^2=t"
Diffrentiate with respect to x
2ydy=dt
ydy="\\frac{dt}{2}"
Substitute y "^2" =t in equation 1
"\\int \\frac{Cot tdt}{2}=-2logx+logc"
"\\frac{log|sin t|}{2}=logx^{-2}+logc"
"log|sin (y^2)|^{0.5}=logx^{-2}+logc"
"log|sin (y^2)|^{0.5}=logx^{-2}c" { using loga+logb=logab}
"sin(y^2)^{0.5}=\\frac{c}{x^2}"
"\\sqrt{sin(y^2)}=\\frac{c}{x^2}" ....(2)
at Y(2)="\\sqrt{\\frac{\\Pi}{2}}"
"\\sqrt{sin(\\frac{\\Pi}{2})}=\\frac{c}{2^2}"
1="\\frac{c}{4}"
c=4
Putting the value of c in equation 2
"\\sqrt{sin(y^2)}=\\frac{4}{x^2}"
This is the required solution.
Comments
Leave a comment