Question #132208
Solve: 2siny^2dx + xycos^2dy=0 ,
Given: y(2)=√π/2
1
Expert's answer
2020-09-13T18:11:12-0400

As per the question ,

Given differential equation is

2sin(y2)dx+xycos(y2)dy=02sin(y^2)dx+xycos(y^2)dy=0


Using seperation of variable method,

xycos(y2)cos(y^2) dy=2sin(y2)dxdy=-2sin(y^2)dx

ycos(y2)sin(y2)dy=2xdx\frac{ycos(y^2)}{sin(y^2)}dy=-\frac{2}{x}dx

Integrating both the side ycot(y2)dy=2xdx\int ycot(y^2)dy=-\int \frac{2}{x}dx ....(1)

let y2=t^2=t

Diffrentiate with respect to x

2ydy=dt

ydy=dt2\frac{dt}{2}

Substitute y 2^2 =t in equation 1

Cottdt2=2logx+logc\int \frac{Cot tdt}{2}=-2logx+logc

logsint2=logx2+logc\frac{log|sin t|}{2}=logx^{-2}+logc

logsin(y2)0.5=logx2+logclog|sin (y^2)|^{0.5}=logx^{-2}+logc

logsin(y2)0.5=logx2clog|sin (y^2)|^{0.5}=logx^{-2}c { using loga+logb=logab}

sin(y2)0.5=cx2sin(y^2)^{0.5}=\frac{c}{x^2}

sin(y2)=cx2\sqrt{sin(y^2)}=\frac{c}{x^2} ....(2)

at Y(2)=Π2\sqrt{\frac{\Pi}{2}}


sin(Π2)=c22\sqrt{sin(\frac{\Pi}{2})}=\frac{c}{2^2}

1=c4\frac{c}{4}

c=4

Putting the value of c in equation 2

sin(y2)=4x2\sqrt{sin(y^2)}=\frac{4}{x^2}

This is the required solution.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS