As per the question ,
Given differential equation is
2 s i n ( y 2 ) d x + x y c o s ( y 2 ) d y = 0 2sin(y^2)dx+xycos(y^2)dy=0 2 s in ( y 2 ) d x + x ycos ( y 2 ) d y = 0
Using seperation of variable method,
xyc o s ( y 2 ) cos(y^2) cos ( y 2 ) d y = − 2 s i n ( y 2 ) d x dy=-2sin(y^2)dx d y = − 2 s in ( y 2 ) d x
y c o s ( y 2 ) s i n ( y 2 ) d y = − 2 x d x \frac{ycos(y^2)}{sin(y^2)}dy=-\frac{2}{x}dx s in ( y 2 ) ycos ( y 2 ) d y = − x 2 d x
Integrating both the side ∫ y c o t ( y 2 ) d y = − ∫ 2 x d x \int ycot(y^2)dy=-\int \frac{2}{x}dx ∫ yco t ( y 2 ) d y = − ∫ x 2 d x ....(1)
let y2 = t ^2=t 2 = t
Diffrentiate with respect to x
2ydy=dt
ydy=d t 2 \frac{dt}{2} 2 d t
Substitute y 2 ^2 2 =t in equation 1
∫ C o t t d t 2 = − 2 l o g x + l o g c \int \frac{Cot tdt}{2}=-2logx+logc ∫ 2 C o tt d t = − 2 l o gx + l o g c
l o g ∣ s i n t ∣ 2 = l o g x − 2 + l o g c \frac{log|sin t|}{2}=logx^{-2}+logc 2 l o g ∣ s in t ∣ = l o g x − 2 + l o g c
l o g ∣ s i n ( y 2 ) ∣ 0.5 = l o g x − 2 + l o g c log|sin (y^2)|^{0.5}=logx^{-2}+logc l o g ∣ s in ( y 2 ) ∣ 0.5 = l o g x − 2 + l o g c
l o g ∣ s i n ( y 2 ) ∣ 0.5 = l o g x − 2 c log|sin (y^2)|^{0.5}=logx^{-2}c l o g ∣ s in ( y 2 ) ∣ 0.5 = l o g x − 2 c { using loga+logb=logab}
s i n ( y 2 ) 0.5 = c x 2 sin(y^2)^{0.5}=\frac{c}{x^2} s in ( y 2 ) 0.5 = x 2 c
s i n ( y 2 ) = c x 2 \sqrt{sin(y^2)}=\frac{c}{x^2} s in ( y 2 ) = x 2 c ....(2)
at Y(2)=Π 2 \sqrt{\frac{\Pi}{2}} 2 Π
s i n ( Π 2 ) = c 2 2 \sqrt{sin(\frac{\Pi}{2})}=\frac{c}{2^2} s in ( 2 Π ) = 2 2 c
1=c 4 \frac{c}{4} 4 c
c=4
Putting the value of c in equation 2
s i n ( y 2 ) = 4 x 2 \sqrt{sin(y^2)}=\frac{4}{x^2} s in ( y 2 ) = x 2 4
This is the required solution.
Comments