Question #131966

Solve the equations

dx/x+y-z=dy/y+z-x=dz/z+x-y



1
Expert's answer
2020-09-17T11:32:57-0400

dxx+yz=dyy+zx=dzz+xy2dx+dydz4y4z=dxdz2y2z2dx+dydz=2dx2dz=>d(y+z)=0=>y+z=C1z=C1yusing property of the fraction we get:dx+dy2y=dx+dz2xwe know that z=C1y(it means that dz=dy)using this condition, well getdx+dy2y=dxdy2x(yx)dx=(x+y)dyy=yxy+xLet u=yxxu+u=u1u+1xu=u2+1u+1u+1u2+1du=dxx(12ln(u2+1)+arctan(u))+C2=ln(x)we remember, that u=yxSo well have the next answerC2=12ln((yx)2+1)+arctan(yx))+ln(x)\dfrac{dx}{x+y-z}=\dfrac{dy}{y+z-x}=\dfrac{dz}{z+x-y}\\ \dfrac{2dx+dy-dz}{4y-4z}=\dfrac{dx-dz}{2y-2z}\\ 2dx+dy-dz=2dx-2dz=>d(y+z)=0=>\\ y+z=C_1\\ z=C_1-y\\ using \space property\space of \space the\space fraction\space we \space get:\\ \dfrac{dx+dy}{2y}=\dfrac{dx+dz}{2x}\\ we \space know \space that \space z=C_1-y(it \space means \space that \space dz=-dy)\\ using \space this \space condition, \space we'll\space get\\ \dfrac{dx+dy}{2y}=\dfrac{dx-dy}{2x}\\ (y-x)dx=(x+y)dy\\ y'=\dfrac{y-x}{y+x}\\ Let \space u=\dfrac{y}{x}\\ xu'+u=\dfrac{u-1}{u+1}\\ xu'=-\dfrac{u^2+1}{u+1}\\ -\dfrac{u+1}{u^2+1}du=\dfrac{dx}{x}\\ -(\dfrac{1}{2}\ln(u^2+1)+\arctan(u))+C_2=\ln(x)\\ we \space remember, \space that \space u=\dfrac{y}{x}\\ So\space we'll \space have\space the\space next \space answer\\ C_2=\dfrac{1}{2}\ln((\dfrac{y}{x})^2+1)+\arctan(\dfrac{y}{x}))+\ln(x)\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS