x+y−zdx=y+z−xdy=z+x−ydz4y−4z2dx+dy−dz=2y−2zdx−dz2dx+dy−dz=2dx−2dz=>d(y+z)=0=>y+z=C1z=C1−yusing property of the fraction we get:2ydx+dy=2xdx+dzwe know that z=C1−y(it means that dz=−dy)using this condition, we′ll get2ydx+dy=2xdx−dy(y−x)dx=(x+y)dyy′=y+xy−xLet u=xyxu′+u=u+1u−1xu′=−u+1u2+1−u2+1u+1du=xdx−(21ln(u2+1)+arctan(u))+C2=ln(x)we remember, that u=xySo we′ll have the next answerC2=21ln((xy)2+1)+arctan(xy))+ln(x)
Comments