Question #132080
find the integral surface of the equation : (x-y)y^2p + (y- x)x^2q=(x^2 + y^2)z,
through the curve xz =a^2, y = 0
1
Expert's answer
2020-09-08T15:45:41-0400
SolutionSolution

The given partial differential equation is


(xy)y2P+(yx)x2q=(x2+y2)z(x-y)y^2P+(y-x)x^2q=(x^2+y^2)z


The Lagrange’s auxiliary equations for given PDE is

dx(xy)y2=dy(yx)x2=dz(x2+y2)zTaking dx and dydx(xy)y2=dy(yx)x2\frac{dx}{(x-y)\cdot y^2}=\frac{dy}{(y-x)\cdot x^2}=\frac{dz}{(x^2+y^2) \cdot z}\\ Taking\ dx\ and\ dy\\ \frac{dx}{(x-y)\cdot y^2}=\frac{dy}{(y-x) \cdot x^2}

dydx=x2y2\frac{dy}{dx}=-\frac{x^2}{y^2}

dyy2=dx(x2)dy \cdot y^2=dx \cdot (-x^2)

C1=y3+x3(i)C_1=y^3+x^3------(i)

dx(xy)y2=dz(x2+y2)z\frac{dx}{(x-y) \cdot y^2}=\frac{dz}{(x^2+y^2)\cdot z}

dzz=dx(x2+y2)(xy)y2\frac{dz}{z}=\frac{dx(x^2+y^2)}{(x-y) \cdot y^2}

lnz=1y2F(x,y)+C2(ii)lnz=\frac{1}{y^2}\cdot F(x,y)+C_2--(ii)


Here, y cannot be 0 in this equation that is why there is no intersection with curve xz=a2,y=0.xz=a^2, y=0.


Answer: No solution.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS