The given partial differential equation is
The Lagrange’s auxiliary equations for given PDE is
"\\frac{dx}{(x-y)\\cdot y^2}=\\frac{dy}{(y-x)\\cdot x^2}=\\frac{dz}{(x^2+y^2) \\cdot z}\\\\\nTaking\\ dx\\ and\\ dy\\\\\n\\frac{dx}{(x-y)\\cdot y^2}=\\frac{dy}{(y-x) \\cdot x^2}""\\frac{dy}{dx}=-\\frac{x^2}{y^2}"
"dy \\cdot y^2=dx \\cdot (-x^2)"
"C_1=y^3+x^3------(i)"
"\\frac{dx}{(x-y) \\cdot y^2}=\\frac{dz}{(x^2+y^2)\\cdot z}"
"\\frac{dz}{z}=\\frac{dx(x^2+y^2)}{(x-y) \\cdot y^2}"
"lnz=\\frac{1}{y^2}\\cdot F(x,y)+C_2--(ii)"
Here, y cannot be 0 in this equation that is why there is no intersection with curve "xz=a^2, y=0."
Answer: No solution.
Comments
Leave a comment