We separate the variables and receive the following:
After integration we receive "ln(sin\\,y)+ln(e^x+1)+c=0,\\,\\,c\\in\\mathbb{R}"
From this we receive that "ln(sin\\,y(e^x+1)e^c)=0" . Thus, "sin\\,y(e^x+1)e^c=1"
The latter implies that "sin\\,y=\\frac{1}{(e^x+1)e^c}" . From the latter we find that "y=(-1)^narcsin\\left(\\frac{1}{(e^x+1)e^c}\\right)+\\pi n."
Answer: "y=(-1)^narcsin\\left(\\frac{1}{(e^x+1)e^c}\\right)+\\pi n" , "c\\in\\mathbb{R}"
Comments
Leave a comment