Question #131543
Solve: e^(x)sinydx + (e^x +1)cosydy=0
1
Expert's answer
2020-09-02T19:06:44-0400

We separate the variables and receive the following:


cosysinydy+exex+1dx=0\frac{cos\,y}{sin\,y}dy+\frac{e^x}{e^x+1}dx=0

After integration we receive ln(siny)+ln(ex+1)+c=0,cRln(sin\,y)+ln(e^x+1)+c=0,\,\,c\in\mathbb{R}

From this we receive that ln(siny(ex+1)ec)=0ln(sin\,y(e^x+1)e^c)=0 . Thus, siny(ex+1)ec=1sin\,y(e^x+1)e^c=1

The latter implies that siny=1(ex+1)ecsin\,y=\frac{1}{(e^x+1)e^c} . From the latter we find that y=(1)narcsin(1(ex+1)ec)+πn.y=(-1)^narcsin\left(\frac{1}{(e^x+1)e^c}\right)+\pi n.

Answer: y=(1)narcsin(1(ex+1)ec)+πny=(-1)^narcsin\left(\frac{1}{(e^x+1)e^c}\right)+\pi n , cRc\in\mathbb{R}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS