(D2−2DD′+D′2)z=12xy. The auxiliary equation of the given equation is
m2−2m+1=0
(m−1)2=0
m1,2=1Then the complementary function of the given equation is
u=φ1(y+1,x)+xφ2(y+1,x)=φ1(y,x)+xφ2(y,x)When f(x,y)=V, where V is function of x and y, then partial integral:
p=F(D,D′)1V Then partial integral
p=D2−2DD′+D′21(12xy)=
=(D−D′)21(12xy)=D212(1−DD′)−2(xy)=
=D212(1+D2D′+D23D′2+...)(xy)=
=D212(xy+D2(x)+0+...)=
=D212(xy)+D324(x)=12y(6x3)+24(24x4)=
=2x3y+x4 Then the general solution of the given equation is z=u+p, such that
z=φ1(y,x)+xφ2(y,x)+x4+2x3y, where φ1,φ2 are arbitrary functions.
Comments