Question #131632
(D^2-2DD'+D^2)z=12xy
1
Expert's answer
2020-09-07T13:37:28-0400
(D22DD+D2)z=12xy.(D^2-2DD'+D'^2)z=12xy.

The auxiliary equation of the given equation is


m22m+1=0m^2-2m+1=0

(m1)2=0(m-1)^2=0

m1,2=1m_{1,2}=1

Then the complementary function of the given equation is


u=φ1(y+1,x)+xφ2(y+1,x)=φ1(y,x)+xφ2(y,x)u=\varphi_1(y+1,x)+x\varphi_2(y+1,x)=\varphi_1(y,x)+x\varphi_2(y,x)

When f(x,y)=V,f(x, y)=V, where VV is function of xx and y,y, then partial integral:


p=1F(D,D)Vp=\dfrac{1}{F(D,D')}V

Then partial integral


p=1D22DD+D2(12xy)=p=\dfrac{1}{D^2-2DD'+D'^2 }(12xy)=

=1(DD)2(12xy)=12D2(1DD)2(xy)==\dfrac{1}{(D-D')^2 }(12xy)=\dfrac{12}{D^2 }(1-\dfrac{D'}{D})^{-2}(xy)=

=12D2(1+2DD+3D2D2+...)(xy)==\dfrac{12}{D^2 }(1+\dfrac{2D'}{D}+\dfrac{3D'^2}{D^2}+...)(xy)=

=12D2(xy+2D(x)+0+...)==\dfrac{12}{D^2 }(xy+\dfrac{2}{D}(x)+0+...)=

=12D2(xy)+24D3(x)=12y(x36)+24(x424)==\dfrac{12}{D^2 }(xy)+\dfrac{24}{D^3 }(x)=12y(\dfrac{x^3}{6 })+24(\dfrac{x^4}{24 })=


=2x3y+x4=2x^3y+x^4

Then the general solution of the given equation is z=u+p,z=u+p, such that


z=φ1(y,x)+xφ2(y,x)+x4+2x3y,z=\varphi_1(y,x)+x\varphi_2(y,x)+x^4+2x^3y,

where φ1,φ2\varphi_1, \varphi_2 are arbitrary functions. 


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS