Solution:
To solve differential equation: dxdy+xy=x2y2
dxdy+xy=x2y2...(i)
Put y=vx...(ii)
On differentiating w.r.t x
dxdy=v+dxxdv...(iii)
Put (ii) and (iii) in (i), we get,
v+dxxdv+xvx=x2v2x2⇒v+dxxdv+v=v2⇒dxxdv=v2−2v⇒v2−2vdv=xdx⇒(v−1)2−12dv=xdx
On integrating both sides,
21ln∣(v−1)+1(v−1)−1∣=lnx+C⇒21ln∣vv−2∣=lnx+C⇒ln∣vv−2∣=2lnx+2C
⇒ln∣xyxy−2∣=2lnx+2C [Using (ii)]
⇒ln∣yy−2x∣=lnx2+2C⇒ln∣yy−2x∣−lnx2=2C⇒ln∣yx2y−2x∣=2C
⇒yx2y−2x=e2C [When lny=x, then y=ex]
⇒yx2y−2x=k [where k=e2C, constant]
⇒y−2x=kyx2⇒y−kyx2=2x⇒y(1−kx2)=2x⇒y=1−kx22x
Answer:
The solution of given differential equation is y=1−kx22x , where k is a constant.
Comments