Solution:
To solve differential equation: dxdyβ+xyβ=x2y2β
dxdyβ+xyβ=x2y2β...(i)
Put y=vx...(ii)
On differentiating w.r.t x
dxdyβ=v+dxxdvβ...(iii)
Put (ii) and (iii) in (i), we get,
v+dxxdvβ+xvxβ=x2v2x2ββv+dxxdvβ+v=v2βdxxdvβ=v2β2vβv2β2vdvβ=xdxββ(vβ1)2β12dvβ=xdxβ
On integrating both sides,
21βlnβ£(vβ1)+1(vβ1)β1ββ£=lnx+Cβ21βlnβ£vvβ2ββ£=lnx+Cβlnβ£vvβ2ββ£=2lnx+2C
βlnβ£xyβxyββ2ββ£=2lnx+2C [Using (ii)]
βlnβ£yyβ2xββ£=lnx2+2Cβlnβ£yyβ2xββ£βlnx2=2Cβlnβ£yx2yβ2xββ£=2C
βyx2yβ2xβ=e2C [When lny=x, then y=ex]
βyx2yβ2xβ=k [where k=e2C, constant]
βyβ2x=kyx2βyβkyx2=2xβy(1βkx2)=2xβy=1βkx22xβ
Answer:
The solution of given differential equation is y=1βkx22xβ , where k is a constant.
Comments