Question #132253
Solve : dy/dx + y/x = y^2/x^2
1
Expert's answer
2020-09-16T19:22:19-0400

Solution:

To solve differential equation: dydx+yx=y2x2\frac{dy}{dx} + \frac y x=\frac{y^2}{x^2}

dydx+yx=y2x2...(i)\frac{dy}{dx} + \frac y x=\frac{y^2}{x^2} ...(i)

Put y=vx...(ii)y=vx ...(ii)

On differentiating w.r.t xx

dydx=v+xdvdx...(iii)\frac{dy}{dx}=v+\frac{xdv}{dx} ...(iii)

Put (ii) and (iii) in (i), we get,

v+xdvdx+vxx=v2x2x2β‡’v+xdvdx+v=v2β‡’xdvdx=v2βˆ’2vβ‡’dvv2βˆ’2v=dxxβ‡’dv(vβˆ’1)2βˆ’12=dxxv+\frac{xdv}{dx}+\frac{vx}{x}=\frac{v^2x^2}{x^2} \\ \Rightarrow v+\frac{xdv}{dx}+v=v^2 \\ \Rightarrow \frac{xdv}{dx}=v^2-2v \\ \Rightarrow \frac{dv}{v^2-2v}=\frac{dx}{x} \\ \Rightarrow \frac{dv}{(v-1)^2-1^2}=\frac{dx}{x}

On integrating both sides,

12ln⁑∣(vβˆ’1)βˆ’1(vβˆ’1)+1∣=ln⁑x+Cβ‡’12ln⁑∣vβˆ’2v∣=ln⁑x+Cβ‡’ln⁑∣vβˆ’2v∣=2ln⁑x+2C\frac 1 2 \ln |\frac{(v-1)-1}{(v-1)+1}|=\ln x+C \\ \Rightarrow \frac 1 2 \ln |\frac{v-2}{v}|=\ln x+C \\ \Rightarrow \ln |\frac{v-2}{v}|=2\ln x+2C

β‡’ln⁑∣yxβˆ’2yx∣=2ln⁑x+2C\\ \Rightarrow \ln |\frac{\frac y x-2}{\frac y x}|=2\ln x+2C [Using (ii)]

β‡’ln⁑∣yβˆ’2xy∣=ln⁑x2+2Cβ‡’ln⁑∣yβˆ’2xyβˆ£βˆ’ln⁑x2=2Cβ‡’ln⁑∣yβˆ’2xyx2∣=2C\\ \Rightarrow \ln |\frac{y-2x}{y}|=\ln x^2+2C \\ \Rightarrow \ln |\frac{y-2x}{y}|-\ln x^2=2C \\ \Rightarrow \ln |\frac{y-2x}{yx^2}|=2C

β‡’yβˆ’2xyx2=e2C\\ \Rightarrow\frac{y-2x}{yx^2}=e^{2C} [When ln⁑y=x\ln y=x, then y=exy=e^x]

β‡’yβˆ’2xyx2=k\\ \Rightarrow\frac{y-2x}{yx^2}=k [where k=e2Ck=e^{2C}, constant]

β‡’yβˆ’2x=kyx2β‡’yβˆ’kyx2=2xβ‡’y(1βˆ’kx2)=2xβ‡’y=2x1βˆ’kx2\Rightarrow y-2x=kyx^2 \\ \Rightarrow y-kyx^2=2x \\ \Rightarrow y(1-kx^2)=2x \\ \Rightarrow y=\frac{2x}{1-kx^2}

Answer:

The solution of given differential equation is y=2x1βˆ’kx2y=\frac{2x}{1-kx^2} , where kk is a constant.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS