dydx+ylogyx=ylog2yx2\frac{dy}{dx}+\frac{y\log{y}}{x}=\frac{y{\log^2{y}}}{x^2}dxdy+xylogy=x2ylog2y
we will seek solution in the form y=10kxy=10^{kx}y=10kx , dydx=kln10∗10kx\frac{dy}{dx}={k}\ln{10}*10^{kx}dxdy=kln10∗10kx
kln10∗10kx+10kxkxx=10kx(kx)2x2{k}\ln{10}*10^{kx}+10^{kx}\frac{kx}{x}=10^{kx}\frac{(kx)^2}{x^2}kln10∗10kx+10kxxkx=10kxx2(kx)2
kln10+k=k2{k}{\ln10}+k=k^2kln10+k=k2
k(k−(1+ln10)=0k(k-(1+\ln{10})=0k(k−(1+ln10)=0
k1=0k_1=0k1=0 ; k2=1+1ln10k_2=1+{1}\ln{10}k2=1+1ln10
y1=100∗x=1y_1=10^{0*x}=1y1=100∗x=1
y2=10(1+ln10)xy_2=10^{(1+\ln{10})x}y2=10(1+ln10)x
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments