Question #132254
Solve: dy/dx + ylogy/x = y(logy)^2/x^2
1
Expert's answer
2020-09-22T13:10:37-0400

dydx+ylogyx=ylog2yx2\frac{dy}{dx}+\frac{y\log{y}}{x}=\frac{y{\log^2{y}}}{x^2}

we will seek solution in the form y=10kxy=10^{kx} , dydx=kln1010kx\frac{dy}{dx}={k}\ln{10}*10^{kx}

kln1010kx+10kxkxx=10kx(kx)2x2{k}\ln{10}*10^{kx}+10^{kx}\frac{kx}{x}=10^{kx}\frac{(kx)^2}{x^2}

kln10+k=k2{k}{\ln10}+k=k^2

k(k(1+ln10)=0k(k-(1+\ln{10})=0

k1=0k_1=0 ; k2=1+1ln10k_2=1+{1}\ln{10}

y1=100x=1y_1=10^{0*x}=1

y2=10(1+ln10)xy_2=10^{(1+\ln{10})x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS