Question #132255
Solve: dy/dx + y = y^3(cosx - sinx)
1
Expert's answer
2020-09-17T15:37:25-0400

Bernoulli differential equation


dydx+y=(cosxsinx)y3,n=3\dfrac{dy}{dx}+y=(\cos x-\sin x)y^3, n=3


Divide both sides by y3y^3


1y3dydx+y2=cosxsinx\dfrac{1}{y^3}\dfrac{dy}{dx}+y^{-2}=\cos x-\sin x

To find the solution, change the dependent variable from y to z, where z=y13=y2z=y^{1-3}=y^{-2}


dzdx=(2y3)dydx\dfrac{dz}{dx}=(-\dfrac{2}{y^3})\dfrac{dy}{dx}

2y3dydx2y2=2(cosxsinx)\dfrac{-2}{y^3}\dfrac{dy}{dx}-2y^{-2}=-2(\cos x-\sin x)

dzdx2z=2cosx+2sinx\dfrac{dz}{dx}-2z=-2\cos x+2\sin x

P(x)=2P(x)=-2

We have the integrating factor


I(x)=e(2)dx=e2xI(x)=e^{\int(-2)dx}=e^{-2x}

Then multiplying through by I(x)I(x), we get


e2xdzdx2e2xz=2e2x(sinxcosx)e^{-2x}\dfrac{dz}{dx}-2e^{-2x}z=2e^{-2x}(\sin x-\cos x)

ddx(e2xz)=2e2x(sinxcosx)\dfrac{d}{dx}(e^{-2x}z)=2e^{-2x}(\sin x-\cos x)

e2xz=2e2x(sinxcosx)dxe^{-2x}z=2\int e^{-2x}(\sin x-\cos x)dx

e2xsinxdx=cosxe2x2e2xcosxdx\int e^{-2x}\sin xdx=-\cos x e^{-2x}-2\int e^{-2x}\cos xdx

e2xcosxdx=sinxe2x+2e2xsinxdx\int e^{-2x}\cos xdx=\sin x e^{-2x}+2\int e^{-2x}\sin xdx


e2xsinxdx=cosxe2x2sinxe2x4e2xsinxdx\int e^{-2x}\sin xdx=-\cos x e^{-2x}-2\sin x e^{-2x}-4\int e^{-2x}\sin xdx

5e2xsinxdx=cosxe2x2sinxe2x5\int e^{-2x}\sin xdx=-\cos x e^{-2x}-2\sin x e^{-2x}

e2xsinxdx=15cosxe2x25sinxe2x\int e^{-2x}\sin xdx=-\dfrac{1}{5}\cos x e^{-2x}-\dfrac{2}{5}\sin x e^{-2x}

e2xcosxdx=sinxe2x25cosxe2x45sinxe2x=\int e^{-2x}\cos xdx=\sin x e^{-2x}-\dfrac{2}{5}\cos x e^{-2x}-\dfrac{4}{5}\sin x e^{-2x}=

=25cosxe2x+15sinxe2x=-\dfrac{2}{5}\cos x e^{-2x}+\dfrac{1}{5}\sin x e^{-2x}


e2xz=25cosxe2x45sinxe2x+e^{-2x}z=-\dfrac{2}{5}\cos x e^{-2x}-\dfrac{4}{5}\sin x e^{-2x}+

+45cosxe2x25sinxe2x+C=+\dfrac{4}{5}\cos x e^{-2x}-\dfrac{2}{5}\sin x e^{-2x}+C=

=25cosxe2x65sinxe2x+C=\dfrac{2}{5}\cos x e^{-2x}-\dfrac{6}{5}\sin x e^{-2x}+C

z=25cosx65sinx+Ce2xz=\dfrac{2}{5}\cos x -\dfrac{6}{5}\sin x +Ce^{2x}

1y2=25cosx65sinx+Ce2x\dfrac{1}{y^2}=\dfrac{2}{5}\cos x -\dfrac{6}{5}\sin x +Ce^{2x}

y2=125cosx65sinx+Ce2xy^2=\dfrac{1}{\dfrac{2}{5}\cos x -\dfrac{6}{5}\sin x +Ce^{2x}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS