Bernoulli differential equation
dxdy+y=(cosx−sinx)y3,n=3
Divide both sides by y3
y31dxdy+y−2=cosx−sinxTo find the solution, change the dependent variable from y to z, where z=y1−3=y−2
dxdz=(−y32)dxdy
y3−2dxdy−2y−2=−2(cosx−sinx)
dxdz−2z=−2cosx+2sinx P(x)=−2
We have the integrating factor
I(x)=e∫(−2)dx=e−2xThen multiplying through by I(x), we get
e−2xdxdz−2e−2xz=2e−2x(sinx−cosx)
dxd(e−2xz)=2e−2x(sinx−cosx)
e−2xz=2∫e−2x(sinx−cosx)dx
∫e−2xsinxdx=−cosxe−2x−2∫e−2xcosxdx
∫e−2xcosxdx=sinxe−2x+2∫e−2xsinxdx
∫e−2xsinxdx=−cosxe−2x−2sinxe−2x−4∫e−2xsinxdx
5∫e−2xsinxdx=−cosxe−2x−2sinxe−2x
∫e−2xsinxdx=−51cosxe−2x−52sinxe−2x
∫e−2xcosxdx=sinxe−2x−52cosxe−2x−54sinxe−2x=
=−52cosxe−2x+51sinxe−2x
e−2xz=−52cosxe−2x−54sinxe−2x+
+54cosxe−2x−52sinxe−2x+C=
=52cosxe−2x−56sinxe−2x+C
z=52cosx−56sinx+Ce2x
y21=52cosx−56sinx+Ce2x
y2=52cosx−56sinx+Ce2x1
Comments