Let us substitute "z=y' \\Rightarrow y''=z', \\; z'=1+z^2."
Therefore, "\\dfrac{dz} {1+z^2} =dx."
We should integrate it with respect to x,
"\\int\\dfrac{dz} {1+z^2} =\\int dx, \\\\\n\\tan^{-1}z=x+C_1, \\\\\nz=\\tan(x+C_1)."
Next, we solve an equation
"y'=\\tan (x+C_1), \\\\\ny=\\int \\tan (x+C_1)dx = - \\ln(\\cos(x+C_1)) +C_2."
Comments
Leave a comment