Let us substitute z=y′⇒y′′=z′, z′=1+z2.z=y' \Rightarrow y''=z', \; z'=1+z^2.z=y′⇒y′′=z′,z′=1+z2.
Therefore, dz1+z2=dx.\dfrac{dz} {1+z^2} =dx.1+z2dz=dx.
We should integrate it with respect to x,
∫dz1+z2=∫dx,tan−1z=x+C1,z=tan(x+C1).\int\dfrac{dz} {1+z^2} =\int dx, \\ \tan^{-1}z=x+C_1, \\ z=\tan(x+C_1).∫1+z2dz=∫dx,tan−1z=x+C1,z=tan(x+C1).
Next, we solve an equation
y′=tan(x+C1),y=∫tan(x+C1)dx=−ln(cos(x+C1))+C2.y'=\tan (x+C_1), \\ y=\int \tan (x+C_1)dx = - \ln(\cos(x+C_1)) +C_2.y′=tan(x+C1),y=∫tan(x+C1)dx=−ln(cos(x+C1))+C2.
Need a fast expert's response?
and get a quick answer at the best price
for any assignment or question with DETAILED EXPLANATIONS!
Comments