Question #132422
Solve the differential equation y ′′ =1+(y')^2
1
Expert's answer
2020-09-13T18:28:20-0400

Let us substitute z=yy=z,  z=1+z2.z=y' \Rightarrow y''=z', \; z'=1+z^2.

Therefore, dz1+z2=dx.\dfrac{dz} {1+z^2} =dx.

We should integrate it with respect to x,

dz1+z2=dx,tan1z=x+C1,z=tan(x+C1).\int\dfrac{dz} {1+z^2} =\int dx, \\ \tan^{-1}z=x+C_1, \\ z=\tan(x+C_1).

Next, we solve an equation

y=tan(x+C1),y=tan(x+C1)dx=ln(cos(x+C1))+C2.y'=\tan (x+C_1), \\ y=\int \tan (x+C_1)dx = - \ln(\cos(x+C_1)) +C_2.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS