By the condition "\\frac{dT}{dt}\\backsim(T-T_a)"
where "\\frac{dT}{dt}" - the rate of cooling; "T"- the temperature of substance; "T_a" - the temperature of air.
We can rewrite this expression as "\\frac{dT}{dt}=-k(T-T_a)" , where "k" - coefficient of proportionality. Solve this equation.
"\\frac{dT}{dt}=-k(T-T_a)"
"\\frac{dT}{T-T_a}=-kdt"
"\\int_{T_1}^{T_2}\\frac{dT}{T-T_a}=-k\\int_{0}^{t} dt"
where "T_1=370", "T_2=330", "t=10", "T_a=290".
"ln\\frac{T_1-T_a}{T_2-T_a}=kt"
"ln\\frac{370-290}{330-290}=ln\\frac{80}{40}=ln2"
"ln2=10k"
"k=0.07"
Now, find the low of cooling of temperature.
"\\int\\frac{dT}{T-T_a}=-0.07\\int dt"
"ln(T-T_a)=-0.07t"
"e^{ln(T-T_a)}=e^{-0.07t}"
"T-T_a=e^{-0.07t}"
"T=T_a+e^{-0.07t}"
Substitute "T_3=295".
"295=290+e^{-0.07t}"
"e^{-0.07t}=5"
"-0.07t=ln5"
"t=23"
Answer: t=23 minutes.
Comments
Leave a comment