By the condition dtdT∽(T−Ta)
where dtdT - the rate of cooling; T- the temperature of substance; Ta - the temperature of air.
We can rewrite this expression as dtdT=−k(T−Ta) , where k - coefficient of proportionality. Solve this equation.
dtdT=−k(T−Ta)
T−TadT=−kdt
∫T1T2T−TadT=−k∫0tdt
where T1=370, T2=330, t=10, Ta=290.
lnT2−TaT1−Ta=kt
ln330−290370−290=ln4080=ln2
ln2=10k
k=0.07
Now, find the low of cooling of temperature.
∫T−TadT=−0.07∫dt
ln(T−Ta)=−0.07t
eln(T−Ta)=e−0.07t
T−Ta=e−0.07t
T=Ta+e−0.07t
Substitute T3=295.
295=290+e−0.07t
e−0.07t=5
−0.07t=ln5
t=23
Answer: t=23 minutes.
Comments