Question #132326
According to Newton’s law of cooling, the rate at which a substance cools in moving
air is proportional to the difference between the temperature of the substance and that
of the air. If the temperature of the air is C
o
290 and the substance cools from
C
o
370 to C
o
330 in 10 minutes, find when the temperature will be C
o
295 .
1
Expert's answer
2020-09-14T11:16:01-0400

By the condition dTdt(TTa)\frac{dT}{dt}\backsim(T-T_a)

where dTdt\frac{dT}{dt} - the rate of cooling; TT- the temperature of substance; TaT_a - the temperature of air.

We can rewrite this expression as dTdt=k(TTa)\frac{dT}{dt}=-k(T-T_a) , where kk - coefficient of proportionality. Solve this equation.

dTdt=k(TTa)\frac{dT}{dt}=-k(T-T_a)

dTTTa=kdt\frac{dT}{T-T_a}=-kdt

T1T2dTTTa=k0tdt\int_{T_1}^{T_2}\frac{dT}{T-T_a}=-k\int_{0}^{t} dt

where T1=370T_1=370, T2=330T_2=330, t=10t=10, Ta=290T_a=290.

lnT1TaT2Ta=ktln\frac{T_1-T_a}{T_2-T_a}=kt

ln370290330290=ln8040=ln2ln\frac{370-290}{330-290}=ln\frac{80}{40}=ln2

ln2=10kln2=10k

k=0.07k=0.07

Now, find the low of cooling of temperature.

dTTTa=0.07dt\int\frac{dT}{T-T_a}=-0.07\int dt

ln(TTa)=0.07tln(T-T_a)=-0.07t

eln(TTa)=e0.07te^{ln(T-T_a)}=e^{-0.07t}

TTa=e0.07tT-T_a=e^{-0.07t}

T=Ta+e0.07tT=T_a+e^{-0.07t}

Substitute T3=295T_3=295.

295=290+e0.07t295=290+e^{-0.07t}

e0.07t=5e^{-0.07t}=5

0.07t=ln5-0.07t=ln5

t=23t=23

Answer: t=23 minutes.



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS