a). At first, we solve the following differential equation:
x2y′′+xy′−y=0
We look for solution in the following form:
y=xα.
After substitution we receive:
α(α−1)xα+αxα−xα=0
From this we receive:
α2−1=0.
Thus, we have the solution y=c1x+c2x1 , c1,c2∈C .
Now, we set y=c1(x)x+c2(x)x1 and add additional restriction:
c1′x+c2′x1=0. The latter implies c1′′x+c1′+c2′′x1−c2′x21=0 . We substitute y into x2y′′+xy′−y=x2ex
and get:
x2(c1′′x+2c1′+c2′′x1−2c2′x21+2c2x31)+x(c1′x+c1+c2′x1−c2x21)−(c1x+c2x1)=x2ex
x2(c1′−c2′x21)=x2ex
Thus, we receive a system of equations:
x2(c1′−c2′x21)=x2ex
c1′x+c2′x1=0
From the latter we obtain:
2c1′x=xex
Thus, c1(x)=21ex+k1 , c2(x)=−21(2−2x+x2)ex+k2 , k1,k2∈C
The resulting solution is y=(21ex+k1)x+(−21(2−2x+x2)ex+k2)x1 .
b). At first, we solve the equation: y′′+a2y=0 . The solution is y=c1eiax+c2e−iax
We suppose that y=c1(x)eiax+c2(x)e−iax and c1′eiax+c2′e−iax=0 . From the latter we get: c1′′eiax+iac1′eiax+c2′′e−iax−iac2′e−iax=0 We substitute y into y′′+a2y=sinax1 and receive c1′′eiax+2iac1′eiax−c1a2eiax+c2′′e−iax−2iac2′e−iax−c2a2e−iax+a2(c1(x)eiax+c2(x)e−iax)=sinax1
iac1′eiax−iac2′e−iax=sinax1
c1′eiax+c2′e−iax=0
2iac1′eiax=sinax1
c1′=−i2asinaxe−iax
c1=−2ai(a1ln(sinax)−ix+c)
c2=2ai(a1ln(sinax)+ix+c)
y=−2ai(a1ln(sinax)−ix+c)eiax+2ai(a1ln(sinax)+ix+c)e−iax
Answer: a) y=(21ex+k1)x+(−21(2−2x+x2)ex+k2)x1
b) y=−2ai(a1ln(sinax)−ix+c)eiax+2ai(a1ln(sinax)+ix+c)e−iax
Comments