Question #132428
Apply the method of variations of parameters to solve the following differential equations:
a) x^2y''+xy'-y=x^2e^x
b)y"+a^2y=cosecax
1
Expert's answer
2020-09-14T15:35:01-0400

a). At first, we solve the following differential equation:

x2y+xyy=0x^2y''+xy'-y=0

We look for solution in the following form:

y=xα.y=x^{\alpha}.

After substitution we receive:

α(α1)xα+αxαxα=0\alpha(\alpha-1)x^{\alpha}+\alpha x^{\alpha}-x^{\alpha}=0

From this we receive:

α21=0.\alpha^2-1=0.

Thus, we have the solution y=c1x+c21xy=c_1x+c_2\frac{1}{x} , c1,c2Cc_1,c_2\in\mathbb{C} .

Now, we set y=c1(x)x+c2(x)1xy=c_1(x)x+c_2(x)\frac{1}{x} and add additional restriction:

c1x+c21x=0c_1'x+c_2'\frac1x=0. The latter implies c1x+c1+c21xc21x2=0c_1''x+c_1'+c_2''\frac1{x}-c_2'\frac1{x^2}=0 . We substitute yy into x2y+xyy=x2exx^2y''+xy'-y=x^2e^x

and get:

x2(c1x+2c1+c21x2c21x2+2c21x3)+x(c1x+c1+c21xc21x2)(c1x+c21x)=x2exx^2(c_1''x+2c_1'+c_2''\frac1x-2c_2'\frac1{x^2}+2c_2\frac1{x^3})+x(c_1'x+c_1+c_2'\frac1{x}-c_2\frac{1}{x^2})-(c_1x+c_2\frac{1}{x})=x^2e^x

x2(c1c21x2)=x2exx^2(c_1'-c_2'\frac1{x^2})=x^2e^x

Thus, we receive a system of equations:

x2(c1c21x2)=x2exx^2(c_1'-c_2'\frac1{x^2})=x^2e^x

c1x+c21x=0c_1'x+c_2'\frac1x=0

From the latter we obtain:

2c1x=xex2c_1'x=xe^x

Thus, c1(x)=12ex+k1c_1(x)=\frac12e^x+k_1 , c2(x)=12(22x+x2)ex+k2c_2(x)=-\frac12(2-2x+x^2)e^x+k_2 , k1,k2Ck_1,k_2\in\mathbb{C}

The resulting solution is y=(12ex+k1)x+(12(22x+x2)ex+k2)1xy=(\frac12e^x+k_1)x+(-\frac12(2-2x+x^2)e^x+k_2)\frac{1}{x} .

b). At first, we solve the equation: y+a2y=0y''+a^2y=0 . The solution is y=c1eiax+c2eiaxy=c_1e^{i a x}+c_2e^{-i a x}

We suppose that y=c1(x)eiax+c2(x)eiaxy=c_1(x)e^{i a x}+c_2(x)e^{-i a x} and c1eiax+c2eiax=0c_1'e^{i a x}+c_2'e^{-i a x}=0 . From the latter we get: c1eiax+iac1eiax+c2eiaxiac2eiax=0c_1''e^{i a x}+iac_1'e^{iax}+c_2''e^{-i a x}-iac_2'e^{-iax}=0 We substitute yy into y+a2y=1sinaxy''+a^2y=\frac{1}{sin \,ax} and receive c1eiax+2iac1eiaxc1a2eiax+c2eiax2iac2eiaxc2a2eiax+a2(c1(x)eiax+c2(x)eiax)=1sinaxc_1''e^{i a x}+2i\,a\,c_1'e^{i a x}-c_1a^2e^{i a x}+c_2''e^{-i a x}-2iac_2'e^{-i a x}-c_2a^2e^{-i a x}+a^2(c_1(x)e^{i a x}+c_2(x)e^{-i a x})=\frac{1}{sin \,ax}

iac1eiaxiac2eiax=1sinaxi\,a\,c_1'e^{i a x}-iac_2'e^{-i a x}=\frac{1}{sin \,ax}

c1eiax+c2eiax=0c_1'e^{i a x}+c_2'e^{-i a x}=0

2iac1eiax=1sinax2i\,a\,c_1'e^{i a x}=\frac{1}{sin \,ax}

c1=ieiax2asinaxc_1'=-i\frac{e^{-i a x}}{2a\,sin \,ax}

c1=i2a(1aln(sinax)ix+c)c_1=-\frac{i}{2a}(\frac{1}{a}ln(sin\,ax)-ix+c)

c2=i2a(1aln(sinax)+ix+c)c_2=\frac{i}{2a}(\frac{1}{a}ln(sin\,ax)+ix+c)

y=i2a(1aln(sinax)ix+c)eiax+i2a(1aln(sinax)+ix+c)eiaxy=-\frac{i}{2a}(\frac{1}{a}ln(sin\,ax)-ix+c)e^{i a x}+\frac{i}{2a}(\frac{1}{a}ln(sin\,ax)+ix+c)e^{-i a x}

Answer: a) y=(12ex+k1)x+(12(22x+x2)ex+k2)1xy=(\frac12e^x+k_1)x+(-\frac12(2-2x+x^2)e^x+k_2)\frac{1}{x}

b) y=i2a(1aln(sinax)ix+c)eiax+i2a(1aln(sinax)+ix+c)eiaxy=-\frac{i}{2a}(\frac{1}{a}ln(sin\,ax)-ix+c)e^{i a x}+\frac{i}{2a}(\frac{1}{a}ln(sin\,ax)+ix+c)e^{-i a x}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS