Let us formally write down the conditions of the problem :
"\\left\\{\\begin{array}{l}\n\\displaystyle\\frac{\\partial u}{\\partial t}=4\\cdot\\displaystyle\\frac{\\partial^2u}{\\partial x^2}\\\\[0.3cm]\nu(t,0)=0\\\\[0.3cm]\nu(t,5)=0\\\\[0.3cm]\nu(0,x)=x\n\\end{array}\\right."
We apply the method of separating variables, then the problem takes the form
"u(x,t)=X(x)T(t)\\rightarrow\\left\\{\\begin{array}{l}\n\\displaystyle\\frac{\\partial u}{\\partial t}=\\displaystyle\\frac{\\partial}{\\partial t}\\left(X(x)T(t)\\right)=X(x)T'(t)\\\\[0.3cm]\n\\displaystyle\\frac{\\partial^2 u}{\\partial x^2}=\\displaystyle\\frac{\\partial^2}{\\partial x^2}\\left(X(x)T(t)\\right)=X''(x)T(t)\\\\[0.3cm]\nu(t,0)=X(0)T(t)=0\\to X(0)=0\\\\[0.3cm]\nu(t,5)=X(5)T(t)=0\\to X(5)=0\n\\end{array}\\right."
Then,
"\\frac{\\partial u}{\\partial t}=4\\cdot\\frac{\\partial^2u}{\\partial x^2}\\rightarrow \\left.X(x)T'(t)=4\\cdot X''(x)T(t)\\right|\\div\\left(4X(x)T(t)\\right)\\\\[0.3cm]\n\\frac{X(x)T'(t)}{4X(x)T(t)}=\\frac{4\\cdot X''(x)T(t)}{4X(x)T(t)}\\rightarrow\\frac{T'(t)}{4T(t)}=\\frac{ X''(x)}{X(x)}=-\\lambda\\\\[0.3cm]\n\\left\\{\\begin{array}{l}\nX''(x)=-\\lambda X(x)\\\\[0.3cm]\nT'(t)=-4\\lambda T(t)\n\\end{array}\\right."
Hence, first of all we need to solve the Sturm-Liouville problem for eigenfunctions and eigenvalues
"\\left\\{\\begin{array}{l}\nX''(x)+\\lambda X(x)=0\\\\[0.3cm]\nX(0)=0\\\\[0.3cm]\nX(5)=0\n\\end{array}\\right."
The solution will be sought in the form
"X(x)=e^{kx}\\to X''(x)=k^2\\cdot e^{kx}\\rightarrow\\\\[0.3cm]\nX''(x)+\\lambda X(x)=0\\rightarrow k^2\\cdot e^{kx}+\\lambda\\cdot e^{kx}=0\\rightarrow\\\\[0.3cm]\ne^{kx}\\cdot\\left(k^2+\\lambda\\right)=0\\rightarrow k^2=-\\lambda\\rightarrow\n\\left[\\begin{array}{l}\nk_1=\\sqrt{-\\lambda}=i\\sqrt{\\lambda}\\\\[0.3cm]\nk_2=-\\sqrt{-\\lambda}=-i\\sqrt{\\lambda}\n\\end{array}\\right.\\\\[0.3cm]\nX(x)=C_1\\cdot e^{ix\\sqrt{\\lambda}}+C_2\\cdot e^{-ix\\sqrt{\\lambda}}\\\\[0.3cm]\n\\text{OR}\\quad X(x)=A\\cdot\\cos\\left(x\\sqrt{\\lambda}\\right)+B\\cdot\\sin\\left(x\\sqrt{\\lambda}\\right)\\\\[0.3cm]\nX(0)=A\\cdot\\cos(0)+B\\cdot\\sin(0)=A=0\\\\[0.3cm]\nX(5)=B\\cdot\\sin\\left(5\\sqrt{\\lambda}\\right)=0\\rightarrow\\\\[0.3cm]\n5\\sqrt{\\lambda}=\\pi n, n=1,2,3,\\ldots\\\\[0.3cm]\n\\lambda_n=\\left(\\frac{\\pi n}{5}\\right)^2, n=1,2,3,\\ldots"
Conclusion,
"X_n(x)=B_n\\cdot\\sin\\left(\\frac{\\pi nx}{5}\\right)\\\\[0.3cm]\n\\lambda_n=\\left(\\frac{\\pi n}{5}\\right)^2, n=1,2,3,\\ldots"
Now we find the functions "T(t)" :
"T'(t)+\\lambda_nT(t)=0\\rightarrow\\left.\\frac{dT}{dt}=-\\lambda_nT\\right|\\times\\left(\\frac{dt}{T}\\right)\\\\[0.3cm]\n\\int\\frac{dT}{T}=-\\int\\lambda_ndt\\rightarrow\\ln|T(t)|=-\\lambda_nt+\\ln|C|\\\\[0.3cm]\nT_n(t)=C\\cdot e^{-\\lambda_nt}, n=1,2,3,\\ldots"
Then, particular solutions of our heat equation have the form
"u_n(x,t)=X_n(x)T_n(t)=B_n\\cdot\\sin\\left(\\frac{\\pi nx}{5}\\right)\\cdot C\\cdot e^{-\\lambda_nt}\\\\[0.3cm]\nu_n(x,t)=A_n\\cdot\\sin\\left(\\frac{\\pi nx}{5}\\right)\\cdot e^{-\\lambda_nt}\\\\[0.3cm]\n\\lambda_n=\\left(\\frac{\\pi n}{5}\\right)^2, n=1,2,3,\\ldots"
The general solution of our heat equation have the form
"u(x,t)=\\sum\\limits_{n=1}^\\infty u_n(x,t)=\\sum\\limits_{n=1}^\\infty\\left(A_n\\cdot\\sin\\left(\\frac{\\pi nx}{5}\\right)\\cdot e^{-\\lambda_nt}\\right)"
It remains to find the coefficients "A_n" , for this we use the initial condition
"u(x,0)=\\sum\\limits_{n=1}^\\infty\\left(A_n\\cdot\\sin\\left(\\frac{\\pi nx}{5}\\right)\\cdot e^{-\\lambda_n\\cdot0}\\right)\\\\[0.3cm]\n\\int\\limits_0^5\\left|x=\\sum\\limits_{n=1}^\\infty\\left(A_n\\cdot\\sin\\left(\\frac{\\pi nx}{5}\\right)\\right)\\right|\\times\\sin\\left(\\frac{\\pi mx}{5}\\right)dx\\\\[0.3cm]\n\\int\\limits_0^5\\left(x\\sin\\left(\\frac{\\pi mx}{5}\\right)\\right)dx=\\sum\\limits_{n=1}^\\infty A_n\\cdot\\left(\\int\\limits_0^5\\sin\\left(\\frac{\\pi nx}{5}\\right)\\sin\\left(\\frac{\\pi mx}{5}\\right)dx\\right)"
As we know
"\\int\\limits_0^5\\sin\\left(\\frac{\\pi nx}{5}\\right)\\sin\\left(\\frac{\\pi mx}{5}\\right)dx=\n\\delta_{mn}=\\left\\{\\begin{array}{l}\n1,\\,\\,\\,m=n\\\\[0.3cm]\n0,\\,\\,\\,m\\neq n\n\\end{array}\\right."
"\\delta_{mn}-" Kronecker delta ( more information : https://en.wikipedia.org/wiki/Kronecker_delta )
"\\int\\limits_0^5 x\\cdot\\sin\\left(\\frac{\\pi mx}{5}\\right)dx=\\\\[0.3cm]\n=\\left[\\begin{array}{cc}\nu=x&du=dx\\\\[0.3cm]\ndv=\\sin\\left(\\displaystyle\\frac{\\pi mx}{5}\\right)dx&v=-\\displaystyle\\frac{5}{\\pi m}\\cos\\left(\\displaystyle\\frac{\\pi mx}{5}\\right)\n\\end{array}\\right]=\\\\[0.3cm]\n=\\left.\\frac{-5x}{\\pi m}\\cos\\left(\\frac{\\pi mx}{5}\\right)\\right|_0^5-\\int\\limits_0^5\\left(\\frac{-5}{\\pi m}\\cos\\left(\\frac{\\pi mx}{5}\\right)\\right)dx=\\\\[0.3cm]\n=\\frac{-25}{\\pi m}\\underbrace{\\cos(\\pi m)}_{(-1)^m}+\\left.\\frac{25}{(\\pi m)^2}\\sin\\left(\\frac{\\pi mx}{5}\\right)\\right|_0^5=\\frac{25\\cdot(-1)^{m+1}}{\\pi m}"
Conclusion,
"\\frac{25\\cdot(-1)^{m+1}}{\\pi m}=\\sum\\limits_{n=1}^\\infty A_n\\cdot\\delta_{mn}\\rightarrow\\\\[0.3cm]\n\\boxed{\\frac{25\\cdot(-1)^{m+1}}{\\pi m}=A_m}\\\\[0.3cm]"
ANSWER
"u(x,t)=\\sum\\limits_{n=1}^\\infty\\left(\\frac{25\\cdot(-1)^{n+1}}{\\pi n}\\cdot\\sin\\left(\\frac{\\pi nx}{5}\\right)\\cdot e^{-\\lambda_nt}\\right)\\\\[0.3cm]\n\\lambda_n=\\left(\\frac{\\pi n}{5}\\right)^2, n=1,2,3,\\ldots"
Comments
Leave a comment