Question #133080
For 0 < x < 5 and t > 0 , solve the one-dimensional heat flow equation ∂u/∂t=4 ∂ ^2u/ ∂ x^2  satisfying the conditions u( t,0)= u (t, 5)= 0, u ( 0,x)=x.
1
Expert's answer
2020-09-16T20:02:59-0400

Let us formally write down the conditions of the problem :



{ut=42ux2u(t,0)=0u(t,5)=0u(0,x)=x\left\{\begin{array}{l} \displaystyle\frac{\partial u}{\partial t}=4\cdot\displaystyle\frac{\partial^2u}{\partial x^2}\\[0.3cm] u(t,0)=0\\[0.3cm] u(t,5)=0\\[0.3cm] u(0,x)=x \end{array}\right.

We apply the method of separating variables, then the problem takes the form



u(x,t)=X(x)T(t){ut=t(X(x)T(t))=X(x)T(t)2ux2=2x2(X(x)T(t))=X(x)T(t)u(t,0)=X(0)T(t)=0X(0)=0u(t,5)=X(5)T(t)=0X(5)=0u(x,t)=X(x)T(t)\rightarrow\left\{\begin{array}{l} \displaystyle\frac{\partial u}{\partial t}=\displaystyle\frac{\partial}{\partial t}\left(X(x)T(t)\right)=X(x)T'(t)\\[0.3cm] \displaystyle\frac{\partial^2 u}{\partial x^2}=\displaystyle\frac{\partial^2}{\partial x^2}\left(X(x)T(t)\right)=X''(x)T(t)\\[0.3cm] u(t,0)=X(0)T(t)=0\to X(0)=0\\[0.3cm] u(t,5)=X(5)T(t)=0\to X(5)=0 \end{array}\right.

Then,



ut=42ux2X(x)T(t)=4X(x)T(t)÷(4X(x)T(t))X(x)T(t)4X(x)T(t)=4X(x)T(t)4X(x)T(t)T(t)4T(t)=X(x)X(x)=λ{X(x)=λX(x)T(t)=4λT(t)\frac{\partial u}{\partial t}=4\cdot\frac{\partial^2u}{\partial x^2}\rightarrow \left.X(x)T'(t)=4\cdot X''(x)T(t)\right|\div\left(4X(x)T(t)\right)\\[0.3cm] \frac{X(x)T'(t)}{4X(x)T(t)}=\frac{4\cdot X''(x)T(t)}{4X(x)T(t)}\rightarrow\frac{T'(t)}{4T(t)}=\frac{ X''(x)}{X(x)}=-\lambda\\[0.3cm] \left\{\begin{array}{l} X''(x)=-\lambda X(x)\\[0.3cm] T'(t)=-4\lambda T(t) \end{array}\right.



Hence, first of all we need to solve the Sturm-Liouville problem for eigenfunctions and eigenvalues


{X(x)+λX(x)=0X(0)=0X(5)=0\left\{\begin{array}{l} X''(x)+\lambda X(x)=0\\[0.3cm] X(0)=0\\[0.3cm] X(5)=0 \end{array}\right.

The solution will be sought in the form

X(x)=ekxX(x)=k2ekxX(x)+λX(x)=0k2ekx+λekx=0ekx(k2+λ)=0k2=λ[k1=λ=iλk2=λ=iλX(x)=C1eixλ+C2eixλORX(x)=Acos(xλ)+Bsin(xλ)X(0)=Acos(0)+Bsin(0)=A=0X(5)=Bsin(5λ)=05λ=πn,n=1,2,3,λn=(πn5)2,n=1,2,3,X(x)=e^{kx}\to X''(x)=k^2\cdot e^{kx}\rightarrow\\[0.3cm] X''(x)+\lambda X(x)=0\rightarrow k^2\cdot e^{kx}+\lambda\cdot e^{kx}=0\rightarrow\\[0.3cm] e^{kx}\cdot\left(k^2+\lambda\right)=0\rightarrow k^2=-\lambda\rightarrow \left[\begin{array}{l} k_1=\sqrt{-\lambda}=i\sqrt{\lambda}\\[0.3cm] k_2=-\sqrt{-\lambda}=-i\sqrt{\lambda} \end{array}\right.\\[0.3cm] X(x)=C_1\cdot e^{ix\sqrt{\lambda}}+C_2\cdot e^{-ix\sqrt{\lambda}}\\[0.3cm] \text{OR}\quad X(x)=A\cdot\cos\left(x\sqrt{\lambda}\right)+B\cdot\sin\left(x\sqrt{\lambda}\right)\\[0.3cm] X(0)=A\cdot\cos(0)+B\cdot\sin(0)=A=0\\[0.3cm] X(5)=B\cdot\sin\left(5\sqrt{\lambda}\right)=0\rightarrow\\[0.3cm] 5\sqrt{\lambda}=\pi n, n=1,2,3,\ldots\\[0.3cm] \lambda_n=\left(\frac{\pi n}{5}\right)^2, n=1,2,3,\ldots

Conclusion,


Xn(x)=Bnsin(πnx5)λn=(πn5)2,n=1,2,3,X_n(x)=B_n\cdot\sin\left(\frac{\pi nx}{5}\right)\\[0.3cm] \lambda_n=\left(\frac{\pi n}{5}\right)^2, n=1,2,3,\ldots

Now we find the functions T(t)T(t) :


T(t)+λnT(t)=0dTdt=λnT×(dtT)dTT=λndtlnT(t)=λnt+lnCTn(t)=Ceλnt,n=1,2,3,T'(t)+\lambda_nT(t)=0\rightarrow\left.\frac{dT}{dt}=-\lambda_nT\right|\times\left(\frac{dt}{T}\right)\\[0.3cm] \int\frac{dT}{T}=-\int\lambda_ndt\rightarrow\ln|T(t)|=-\lambda_nt+\ln|C|\\[0.3cm] T_n(t)=C\cdot e^{-\lambda_nt}, n=1,2,3,\ldots

Then, particular solutions of our heat equation have the form



un(x,t)=Xn(x)Tn(t)=Bnsin(πnx5)Ceλntun(x,t)=Ansin(πnx5)eλntλn=(πn5)2,n=1,2,3,u_n(x,t)=X_n(x)T_n(t)=B_n\cdot\sin\left(\frac{\pi nx}{5}\right)\cdot C\cdot e^{-\lambda_nt}\\[0.3cm] u_n(x,t)=A_n\cdot\sin\left(\frac{\pi nx}{5}\right)\cdot e^{-\lambda_nt}\\[0.3cm] \lambda_n=\left(\frac{\pi n}{5}\right)^2, n=1,2,3,\ldots

The general solution of our heat equation have the form



u(x,t)=n=1un(x,t)=n=1(Ansin(πnx5)eλnt)u(x,t)=\sum\limits_{n=1}^\infty u_n(x,t)=\sum\limits_{n=1}^\infty\left(A_n\cdot\sin\left(\frac{\pi nx}{5}\right)\cdot e^{-\lambda_nt}\right)

It remains to find the coefficients AnA_n , for this we use the initial condition



u(x,0)=n=1(Ansin(πnx5)eλn0)05x=n=1(Ansin(πnx5))×sin(πmx5)dx05(xsin(πmx5))dx=n=1An(05sin(πnx5)sin(πmx5)dx)u(x,0)=\sum\limits_{n=1}^\infty\left(A_n\cdot\sin\left(\frac{\pi nx}{5}\right)\cdot e^{-\lambda_n\cdot0}\right)\\[0.3cm] \int\limits_0^5\left|x=\sum\limits_{n=1}^\infty\left(A_n\cdot\sin\left(\frac{\pi nx}{5}\right)\right)\right|\times\sin\left(\frac{\pi mx}{5}\right)dx\\[0.3cm] \int\limits_0^5\left(x\sin\left(\frac{\pi mx}{5}\right)\right)dx=\sum\limits_{n=1}^\infty A_n\cdot\left(\int\limits_0^5\sin\left(\frac{\pi nx}{5}\right)\sin\left(\frac{\pi mx}{5}\right)dx\right)

As we know



05sin(πnx5)sin(πmx5)dx=δmn={1,m=n0,mn\int\limits_0^5\sin\left(\frac{\pi nx}{5}\right)\sin\left(\frac{\pi mx}{5}\right)dx= \delta_{mn}=\left\{\begin{array}{l} 1,\,\,\,m=n\\[0.3cm] 0,\,\,\,m\neq n \end{array}\right.

δmn\delta_{mn}- Kronecker delta ( more information : https://en.wikipedia.org/wiki/Kronecker_delta )



05xsin(πmx5)dx==[u=xdu=dxdv=sin(πmx5)dxv=5πmcos(πmx5)]==5xπmcos(πmx5)0505(5πmcos(πmx5))dx==25πmcos(πm)(1)m+25(πm)2sin(πmx5)05=25(1)m+1πm\int\limits_0^5 x\cdot\sin\left(\frac{\pi mx}{5}\right)dx=\\[0.3cm] =\left[\begin{array}{cc} u=x&du=dx\\[0.3cm] dv=\sin\left(\displaystyle\frac{\pi mx}{5}\right)dx&v=-\displaystyle\frac{5}{\pi m}\cos\left(\displaystyle\frac{\pi mx}{5}\right) \end{array}\right]=\\[0.3cm] =\left.\frac{-5x}{\pi m}\cos\left(\frac{\pi mx}{5}\right)\right|_0^5-\int\limits_0^5\left(\frac{-5}{\pi m}\cos\left(\frac{\pi mx}{5}\right)\right)dx=\\[0.3cm] =\frac{-25}{\pi m}\underbrace{\cos(\pi m)}_{(-1)^m}+\left.\frac{25}{(\pi m)^2}\sin\left(\frac{\pi mx}{5}\right)\right|_0^5=\frac{25\cdot(-1)^{m+1}}{\pi m}

Conclusion,



25(1)m+1πm=n=1Anδmn25(1)m+1πm=Am\frac{25\cdot(-1)^{m+1}}{\pi m}=\sum\limits_{n=1}^\infty A_n\cdot\delta_{mn}\rightarrow\\[0.3cm] \boxed{\frac{25\cdot(-1)^{m+1}}{\pi m}=A_m}\\[0.3cm]

ANSWER

u(x,t)=n=1(25(1)n+1πnsin(πnx5)eλnt)λn=(πn5)2,n=1,2,3,u(x,t)=\sum\limits_{n=1}^\infty\left(\frac{25\cdot(-1)^{n+1}}{\pi n}\cdot\sin\left(\frac{\pi nx}{5}\right)\cdot e^{-\lambda_nt}\right)\\[0.3cm] \lambda_n=\left(\frac{\pi n}{5}\right)^2, n=1,2,3,\ldots


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS