Let us formally write down the conditions of the problem :
{ ∂ u ∂ t = 4 ⋅ ∂ 2 u ∂ x 2 u ( t , 0 ) = 0 u ( t , 5 ) = 0 u ( 0 , x ) = x \left\{\begin{array}{l}
\displaystyle\frac{\partial u}{\partial t}=4\cdot\displaystyle\frac{\partial^2u}{\partial x^2}\\[0.3cm]
u(t,0)=0\\[0.3cm]
u(t,5)=0\\[0.3cm]
u(0,x)=x
\end{array}\right. ⎩ ⎨ ⎧ ∂ t ∂ u = 4 ⋅ ∂ x 2 ∂ 2 u u ( t , 0 ) = 0 u ( t , 5 ) = 0 u ( 0 , x ) = x
We apply the method of separating variables, then the problem takes the form
u ( x , t ) = X ( x ) T ( t ) → { ∂ u ∂ t = ∂ ∂ t ( X ( x ) T ( t ) ) = X ( x ) T ′ ( t ) ∂ 2 u ∂ x 2 = ∂ 2 ∂ x 2 ( X ( x ) T ( t ) ) = X ′ ′ ( x ) T ( t ) u ( t , 0 ) = X ( 0 ) T ( t ) = 0 → X ( 0 ) = 0 u ( t , 5 ) = X ( 5 ) T ( t ) = 0 → X ( 5 ) = 0 u(x,t)=X(x)T(t)\rightarrow\left\{\begin{array}{l}
\displaystyle\frac{\partial u}{\partial t}=\displaystyle\frac{\partial}{\partial t}\left(X(x)T(t)\right)=X(x)T'(t)\\[0.3cm]
\displaystyle\frac{\partial^2 u}{\partial x^2}=\displaystyle\frac{\partial^2}{\partial x^2}\left(X(x)T(t)\right)=X''(x)T(t)\\[0.3cm]
u(t,0)=X(0)T(t)=0\to X(0)=0\\[0.3cm]
u(t,5)=X(5)T(t)=0\to X(5)=0
\end{array}\right. u ( x , t ) = X ( x ) T ( t ) → ⎩ ⎨ ⎧ ∂ t ∂ u = ∂ t ∂ ( X ( x ) T ( t ) ) = X ( x ) T ′ ( t ) ∂ x 2 ∂ 2 u = ∂ x 2 ∂ 2 ( X ( x ) T ( t ) ) = X ′′ ( x ) T ( t ) u ( t , 0 ) = X ( 0 ) T ( t ) = 0 → X ( 0 ) = 0 u ( t , 5 ) = X ( 5 ) T ( t ) = 0 → X ( 5 ) = 0
Then,
∂ u ∂ t = 4 ⋅ ∂ 2 u ∂ x 2 → X ( x ) T ′ ( t ) = 4 ⋅ X ′ ′ ( x ) T ( t ) ∣ ÷ ( 4 X ( x ) T ( t ) ) X ( x ) T ′ ( t ) 4 X ( x ) T ( t ) = 4 ⋅ X ′ ′ ( x ) T ( t ) 4 X ( x ) T ( t ) → T ′ ( t ) 4 T ( t ) = X ′ ′ ( x ) X ( x ) = − λ { X ′ ′ ( x ) = − λ X ( x ) T ′ ( t ) = − 4 λ T ( t ) \frac{\partial u}{\partial t}=4\cdot\frac{\partial^2u}{\partial x^2}\rightarrow \left.X(x)T'(t)=4\cdot X''(x)T(t)\right|\div\left(4X(x)T(t)\right)\\[0.3cm]
\frac{X(x)T'(t)}{4X(x)T(t)}=\frac{4\cdot X''(x)T(t)}{4X(x)T(t)}\rightarrow\frac{T'(t)}{4T(t)}=\frac{ X''(x)}{X(x)}=-\lambda\\[0.3cm]
\left\{\begin{array}{l}
X''(x)=-\lambda X(x)\\[0.3cm]
T'(t)=-4\lambda T(t)
\end{array}\right. ∂ t ∂ u = 4 ⋅ ∂ x 2 ∂ 2 u → X ( x ) T ′ ( t ) = 4 ⋅ X ′′ ( x ) T ( t ) ∣ ÷ ( 4 X ( x ) T ( t ) ) 4 X ( x ) T ( t ) X ( x ) T ′ ( t ) = 4 X ( x ) T ( t ) 4 ⋅ X ′′ ( x ) T ( t ) → 4 T ( t ) T ′ ( t ) = X ( x ) X ′′ ( x ) = − λ { X ′′ ( x ) = − λ X ( x ) T ′ ( t ) = − 4 λ T ( t )
Hence, first of all we need to solve the Sturm-Liouville problem for eigenfunctions and eigenvalues
{ X ′ ′ ( x ) + λ X ( x ) = 0 X ( 0 ) = 0 X ( 5 ) = 0 \left\{\begin{array}{l}
X''(x)+\lambda X(x)=0\\[0.3cm]
X(0)=0\\[0.3cm]
X(5)=0
\end{array}\right. ⎩ ⎨ ⎧ X ′′ ( x ) + λ X ( x ) = 0 X ( 0 ) = 0 X ( 5 ) = 0
The solution will be sought in the form
X ( x ) = e k x → X ′ ′ ( x ) = k 2 ⋅ e k x → X ′ ′ ( x ) + λ X ( x ) = 0 → k 2 ⋅ e k x + λ ⋅ e k x = 0 → e k x ⋅ ( k 2 + λ ) = 0 → k 2 = − λ → [ k 1 = − λ = i λ k 2 = − − λ = − i λ X ( x ) = C 1 ⋅ e i x λ + C 2 ⋅ e − i x λ OR X ( x ) = A ⋅ cos ( x λ ) + B ⋅ sin ( x λ ) X ( 0 ) = A ⋅ cos ( 0 ) + B ⋅ sin ( 0 ) = A = 0 X ( 5 ) = B ⋅ sin ( 5 λ ) = 0 → 5 λ = π n , n = 1 , 2 , 3 , … λ n = ( π n 5 ) 2 , n = 1 , 2 , 3 , … X(x)=e^{kx}\to X''(x)=k^2\cdot e^{kx}\rightarrow\\[0.3cm]
X''(x)+\lambda X(x)=0\rightarrow k^2\cdot e^{kx}+\lambda\cdot e^{kx}=0\rightarrow\\[0.3cm]
e^{kx}\cdot\left(k^2+\lambda\right)=0\rightarrow k^2=-\lambda\rightarrow
\left[\begin{array}{l}
k_1=\sqrt{-\lambda}=i\sqrt{\lambda}\\[0.3cm]
k_2=-\sqrt{-\lambda}=-i\sqrt{\lambda}
\end{array}\right.\\[0.3cm]
X(x)=C_1\cdot e^{ix\sqrt{\lambda}}+C_2\cdot e^{-ix\sqrt{\lambda}}\\[0.3cm]
\text{OR}\quad X(x)=A\cdot\cos\left(x\sqrt{\lambda}\right)+B\cdot\sin\left(x\sqrt{\lambda}\right)\\[0.3cm]
X(0)=A\cdot\cos(0)+B\cdot\sin(0)=A=0\\[0.3cm]
X(5)=B\cdot\sin\left(5\sqrt{\lambda}\right)=0\rightarrow\\[0.3cm]
5\sqrt{\lambda}=\pi n, n=1,2,3,\ldots\\[0.3cm]
\lambda_n=\left(\frac{\pi n}{5}\right)^2, n=1,2,3,\ldots X ( x ) = e k x → X ′′ ( x ) = k 2 ⋅ e k x → X ′′ ( x ) + λ X ( x ) = 0 → k 2 ⋅ e k x + λ ⋅ e k x = 0 → e k x ⋅ ( k 2 + λ ) = 0 → k 2 = − λ → ⎣ ⎡ k 1 = − λ = i λ k 2 = − − λ = − i λ X ( x ) = C 1 ⋅ e i x λ + C 2 ⋅ e − i x λ OR X ( x ) = A ⋅ cos ( x λ ) + B ⋅ sin ( x λ ) X ( 0 ) = A ⋅ cos ( 0 ) + B ⋅ sin ( 0 ) = A = 0 X ( 5 ) = B ⋅ sin ( 5 λ ) = 0 → 5 λ = πn , n = 1 , 2 , 3 , … λ n = ( 5 πn ) 2 , n = 1 , 2 , 3 , …
Conclusion,
X n ( x ) = B n ⋅ sin ( π n x 5 ) λ n = ( π n 5 ) 2 , n = 1 , 2 , 3 , … X_n(x)=B_n\cdot\sin\left(\frac{\pi nx}{5}\right)\\[0.3cm]
\lambda_n=\left(\frac{\pi n}{5}\right)^2, n=1,2,3,\ldots X n ( x ) = B n ⋅ sin ( 5 πn x ) λ n = ( 5 πn ) 2 , n = 1 , 2 , 3 , …
Now we find the functions T ( t ) T(t) T ( t ) :
T ′ ( t ) + λ n T ( t ) = 0 → d T d t = − λ n T ∣ × ( d t T ) ∫ d T T = − ∫ λ n d t → ln ∣ T ( t ) ∣ = − λ n t + ln ∣ C ∣ T n ( t ) = C ⋅ e − λ n t , n = 1 , 2 , 3 , … T'(t)+\lambda_nT(t)=0\rightarrow\left.\frac{dT}{dt}=-\lambda_nT\right|\times\left(\frac{dt}{T}\right)\\[0.3cm]
\int\frac{dT}{T}=-\int\lambda_ndt\rightarrow\ln|T(t)|=-\lambda_nt+\ln|C|\\[0.3cm]
T_n(t)=C\cdot e^{-\lambda_nt}, n=1,2,3,\ldots T ′ ( t ) + λ n T ( t ) = 0 → d t d T = − λ n T ∣ ∣ × ( T d t ) ∫ T d T = − ∫ λ n d t → ln ∣ T ( t ) ∣ = − λ n t + ln ∣ C ∣ T n ( t ) = C ⋅ e − λ n t , n = 1 , 2 , 3 , …
Then, particular solutions of our heat equation have the form
u n ( x , t ) = X n ( x ) T n ( t ) = B n ⋅ sin ( π n x 5 ) ⋅ C ⋅ e − λ n t u n ( x , t ) = A n ⋅ sin ( π n x 5 ) ⋅ e − λ n t λ n = ( π n 5 ) 2 , n = 1 , 2 , 3 , … u_n(x,t)=X_n(x)T_n(t)=B_n\cdot\sin\left(\frac{\pi nx}{5}\right)\cdot C\cdot e^{-\lambda_nt}\\[0.3cm]
u_n(x,t)=A_n\cdot\sin\left(\frac{\pi nx}{5}\right)\cdot e^{-\lambda_nt}\\[0.3cm]
\lambda_n=\left(\frac{\pi n}{5}\right)^2, n=1,2,3,\ldots u n ( x , t ) = X n ( x ) T n ( t ) = B n ⋅ sin ( 5 πn x ) ⋅ C ⋅ e − λ n t u n ( x , t ) = A n ⋅ sin ( 5 πn x ) ⋅ e − λ n t λ n = ( 5 πn ) 2 , n = 1 , 2 , 3 , …
The general solution of our heat equation have the form
u ( x , t ) = ∑ n = 1 ∞ u n ( x , t ) = ∑ n = 1 ∞ ( A n ⋅ sin ( π n x 5 ) ⋅ e − λ n t ) u(x,t)=\sum\limits_{n=1}^\infty u_n(x,t)=\sum\limits_{n=1}^\infty\left(A_n\cdot\sin\left(\frac{\pi nx}{5}\right)\cdot e^{-\lambda_nt}\right) u ( x , t ) = n = 1 ∑ ∞ u n ( x , t ) = n = 1 ∑ ∞ ( A n ⋅ sin ( 5 πn x ) ⋅ e − λ n t )
It remains to find the coefficients A n A_n A n , for this we use the initial condition
u ( x , 0 ) = ∑ n = 1 ∞ ( A n ⋅ sin ( π n x 5 ) ⋅ e − λ n ⋅ 0 ) ∫ 0 5 ∣ x = ∑ n = 1 ∞ ( A n ⋅ sin ( π n x 5 ) ) ∣ × sin ( π m x 5 ) d x ∫ 0 5 ( x sin ( π m x 5 ) ) d x = ∑ n = 1 ∞ A n ⋅ ( ∫ 0 5 sin ( π n x 5 ) sin ( π m x 5 ) d x ) u(x,0)=\sum\limits_{n=1}^\infty\left(A_n\cdot\sin\left(\frac{\pi nx}{5}\right)\cdot e^{-\lambda_n\cdot0}\right)\\[0.3cm]
\int\limits_0^5\left|x=\sum\limits_{n=1}^\infty\left(A_n\cdot\sin\left(\frac{\pi nx}{5}\right)\right)\right|\times\sin\left(\frac{\pi mx}{5}\right)dx\\[0.3cm]
\int\limits_0^5\left(x\sin\left(\frac{\pi mx}{5}\right)\right)dx=\sum\limits_{n=1}^\infty A_n\cdot\left(\int\limits_0^5\sin\left(\frac{\pi nx}{5}\right)\sin\left(\frac{\pi mx}{5}\right)dx\right) u ( x , 0 ) = n = 1 ∑ ∞ ( A n ⋅ sin ( 5 πn x ) ⋅ e − λ n ⋅ 0 ) 0 ∫ 5 ∣ ∣ x = n = 1 ∑ ∞ ( A n ⋅ sin ( 5 πn x ) ) ∣ ∣ × sin ( 5 πm x ) d x 0 ∫ 5 ( x sin ( 5 πm x ) ) d x = n = 1 ∑ ∞ A n ⋅ ⎝ ⎛ 0 ∫ 5 sin ( 5 πn x ) sin ( 5 πm x ) d x ⎠ ⎞
As we know
∫ 0 5 sin ( π n x 5 ) sin ( π m x 5 ) d x = δ m n = { 1 , m = n 0 , m ≠ n \int\limits_0^5\sin\left(\frac{\pi nx}{5}\right)\sin\left(\frac{\pi mx}{5}\right)dx=
\delta_{mn}=\left\{\begin{array}{l}
1,\,\,\,m=n\\[0.3cm]
0,\,\,\,m\neq n
\end{array}\right. 0 ∫ 5 sin ( 5 πn x ) sin ( 5 πm x ) d x = δ mn = { 1 , m = n 0 , m = n
δ m n − \delta_{mn}- δ mn − Kronecker delta ( more information : https://en.wikipedia.org/wiki/Kronecker_delta )
∫ 0 5 x ⋅ sin ( π m x 5 ) d x = = [ u = x d u = d x d v = sin ( π m x 5 ) d x v = − 5 π m cos ( π m x 5 ) ] = = − 5 x π m cos ( π m x 5 ) ∣ 0 5 − ∫ 0 5 ( − 5 π m cos ( π m x 5 ) ) d x = = − 25 π m cos ( π m ) ⏟ ( − 1 ) m + 25 ( π m ) 2 sin ( π m x 5 ) ∣ 0 5 = 25 ⋅ ( − 1 ) m + 1 π m \int\limits_0^5 x\cdot\sin\left(\frac{\pi mx}{5}\right)dx=\\[0.3cm]
=\left[\begin{array}{cc}
u=x&du=dx\\[0.3cm]
dv=\sin\left(\displaystyle\frac{\pi mx}{5}\right)dx&v=-\displaystyle\frac{5}{\pi m}\cos\left(\displaystyle\frac{\pi mx}{5}\right)
\end{array}\right]=\\[0.3cm]
=\left.\frac{-5x}{\pi m}\cos\left(\frac{\pi mx}{5}\right)\right|_0^5-\int\limits_0^5\left(\frac{-5}{\pi m}\cos\left(\frac{\pi mx}{5}\right)\right)dx=\\[0.3cm]
=\frac{-25}{\pi m}\underbrace{\cos(\pi m)}_{(-1)^m}+\left.\frac{25}{(\pi m)^2}\sin\left(\frac{\pi mx}{5}\right)\right|_0^5=\frac{25\cdot(-1)^{m+1}}{\pi m} 0 ∫ 5 x ⋅ sin ( 5 πm x ) d x = = ⎣ ⎡ u = x d v = sin ( 5 πm x ) d x d u = d x v = − πm 5 cos ( 5 πm x ) ⎦ ⎤ = = πm − 5 x cos ( 5 πm x ) ∣ ∣ 0 5 − 0 ∫ 5 ( πm − 5 cos ( 5 πm x ) ) d x = = πm − 25 ( − 1 ) m cos ( πm ) + ( πm ) 2 25 sin ( 5 πm x ) ∣ ∣ 0 5 = πm 25 ⋅ ( − 1 ) m + 1
Conclusion,
25 ⋅ ( − 1 ) m + 1 π m = ∑ n = 1 ∞ A n ⋅ δ m n → 25 ⋅ ( − 1 ) m + 1 π m = A m \frac{25\cdot(-1)^{m+1}}{\pi m}=\sum\limits_{n=1}^\infty A_n\cdot\delta_{mn}\rightarrow\\[0.3cm]
\boxed{\frac{25\cdot(-1)^{m+1}}{\pi m}=A_m}\\[0.3cm] πm 25 ⋅ ( − 1 ) m + 1 = n = 1 ∑ ∞ A n ⋅ δ mn → πm 25 ⋅ ( − 1 ) m + 1 = A m
ANSWER
u ( x , t ) = ∑ n = 1 ∞ ( 25 ⋅ ( − 1 ) n + 1 π n ⋅ sin ( π n x 5 ) ⋅ e − λ n t ) λ n = ( π n 5 ) 2 , n = 1 , 2 , 3 , … u(x,t)=\sum\limits_{n=1}^\infty\left(\frac{25\cdot(-1)^{n+1}}{\pi n}\cdot\sin\left(\frac{\pi nx}{5}\right)\cdot e^{-\lambda_nt}\right)\\[0.3cm]
\lambda_n=\left(\frac{\pi n}{5}\right)^2, n=1,2,3,\ldots u ( x , t ) = n = 1 ∑ ∞ ( πn 25 ⋅ ( − 1 ) n + 1 ⋅ sin ( 5 πn x ) ⋅ e − λ n t ) λ n = ( 5 πn ) 2 , n = 1 , 2 , 3 , …
Comments