k2−2k+1=0 — auxiliary equation.k1,2=1The complementary function:u=ϕ1(y+1,x)+xϕ2(y+1,x)=ϕ1(y+x)+xϕ2(y+x)f(x,y)=VV is a function of x and y.Partial integral:p=F(D,D′)1Vp=D2−2DD′+D′21(12xy)=(D−D′)21(12xy)==D2(1−DD′)21(12xy)=D212(1−DD′)−2(xy)==D212(1+D2D′+D23D′+…)(xy)==D212(xy+D2(x)+0…)==D212(xy)+D324(x)=12y(6x3)+24(24x4)=x4+2x3y.z=u+p=ϕ1(y+x)+xϕ2(y+x)+x4+2x3y.
Comments