ez−(yx2)1=y2ax2+yb (1)
Differentiating (1) by x:
e−z+yx2(∂x∂z+y2x)=y22ax , from here
a=e−z+yx22xy2(∂x∂z+y2x)
Differentiating (2) by y:
e−z+yx2(−∂y∂z−y2x2)=−y32ax2−y2b
b=e−z+yx2y2(∂y∂z+y2x2)−y2ax2=e−z+yx2[y2(∂y∂z+y2x2)−xy(∂x∂z+y2x)]
Then (1) transforms to
e−z+yx2=e−z+yx22x⋅y2y2⋅x2(∂x∂z+y2x)+e−z+yx2[y(∂y∂z+y2x2)−x(∂x∂z+y2x)]
1=2x(∂x∂z+y2x)+[y(∂y∂z+y2x2)−x(∂x∂z+y2x)]
1=2x(∂x∂z)+yx2+y(∂y∂z)+yx2−xy(∂x∂z)−y2x2
1=(2x−xy)(∂x∂z)+y(∂y∂z)
(2x−xy)(∂x∂z)+y(∂y∂z)=1
Comments