Eliminate the arbitrary constants indicated in brackets from the following equation and form corresponding partial differential equation :
\frac{1}{e^{z-(\frac{x^2}{y})}}= \frac{ax^2}{y^2} + \frac{b}{y}
"\\displaystyle \\frac{1}{e^{z-(\\frac{x^2}{y})}}= \\frac{ax^2}{y^2} + \\frac{b}{y}" (1)
Differentiating (1) by x:
"\\displaystyle e^{-z + \\frac{x^2}{y}} (\\frac{ \\partial z}{\\partial x}+\\frac{2x}{y}) = \\frac{2ax}{y^2}" , from here
"\\displaystyle a = e^{-z + \\frac{x^2}{y}} \\frac{y^2}{2x}(\\frac{ \\partial z}{\\partial x}+\\frac{2x}{y})"
Differentiating (2) by y:
"\\displaystyle e^{-z + \\frac{x^2}{y}} (-\\frac{ \\partial z}{\\partial y}-\\frac{x^2}{y^2}) = -\\frac{2ax^2}{y^3} - \\frac{b}{y^2}"
"b = \\displaystyle e^{-z + \\frac{x^2}{y}} y^2 (\\frac{ \\partial z}{\\partial y}+\\frac{x^2}{y^2}) -\\frac{2ax^2}{y} = e^{-z + \\frac{x^2}{y}} [y^2(\\frac{ \\partial z}{\\partial y}+\\frac{x^2}{y^2}) -xy(\\frac{ \\partial z}{\\partial x}+\\frac{2x}{y})]"
Then (1) transforms to
"\\displaystyle e^{-z + \\frac{x^2}{y}} = e^{-z + \\frac{x^2}{y}} \\frac{y^2 \\cdot x^2}{2x \\cdot y^2}(\\frac{ \\partial z}{\\partial x}+\\frac{2x}{y}) + e^{-z + \\frac{x^2}{y}} [y(\\frac{ \\partial z}{\\partial y}+\\frac{x^2}{y^2}) -x(\\frac{ \\partial z}{\\partial x}+\\frac{2x}{y})]"
"\\displaystyle 1 = \\frac{ x}{2}(\\frac{ \\partial z}{\\partial x}+\\frac{2x}{y}) + [y(\\frac{ \\partial z}{\\partial y}+\\frac{x^2}{y^2}) -x(\\frac{ \\partial z}{\\partial x}+\\frac{2x}{y})]"
"\\displaystyle 1 = \\frac{ x}{2}(\\frac{ \\partial z}{\\partial x})+\\frac{x^2}{y} + y(\\frac{ \\partial z}{\\partial y})+\\frac{x^2}{y} -xy(\\frac{ \\partial z}{\\partial x}) - \\frac{2x^2}{y}"
"\\displaystyle 1 = (\\frac{ x}{2}-xy)(\\frac{ \\partial z}{\\partial x})+ y(\\frac{ \\partial z}{\\partial y})"
"\\displaystyle (\\frac{ x}{2}-xy)(\\frac{ \\partial z}{\\partial x})+ y(\\frac{ \\partial z}{\\partial y}) =1"
Comments
Leave a comment