Question #133353

Eliminate the arbitrary constants indicated in brackets from the following equation and form corresponding partial differential equation :


\frac{1}{e^{z-(\frac{x^2}{y})}}= \frac{ax^2}{y^2} + \frac{b}{y}



1
Expert's answer
2020-09-16T20:02:09-0400

1ez(x2y)=ax2y2+by\displaystyle \frac{1}{e^{z-(\frac{x^2}{y})}}= \frac{ax^2}{y^2} + \frac{b}{y} (1)

Differentiating (1) by x:

ez+x2y(zx+2xy)=2axy2\displaystyle e^{-z + \frac{x^2}{y}} (\frac{ \partial z}{\partial x}+\frac{2x}{y}) = \frac{2ax}{y^2} , from here

a=ez+x2yy22x(zx+2xy)\displaystyle a = e^{-z + \frac{x^2}{y}} \frac{y^2}{2x}(\frac{ \partial z}{\partial x}+\frac{2x}{y})

Differentiating (2) by y:

ez+x2y(zyx2y2)=2ax2y3by2\displaystyle e^{-z + \frac{x^2}{y}} (-\frac{ \partial z}{\partial y}-\frac{x^2}{y^2}) = -\frac{2ax^2}{y^3} - \frac{b}{y^2}

b=ez+x2yy2(zy+x2y2)2ax2y=ez+x2y[y2(zy+x2y2)xy(zx+2xy)]b = \displaystyle e^{-z + \frac{x^2}{y}} y^2 (\frac{ \partial z}{\partial y}+\frac{x^2}{y^2}) -\frac{2ax^2}{y} = e^{-z + \frac{x^2}{y}} [y^2(\frac{ \partial z}{\partial y}+\frac{x^2}{y^2}) -xy(\frac{ \partial z}{\partial x}+\frac{2x}{y})]

Then (1) transforms to

ez+x2y=ez+x2yy2x22xy2(zx+2xy)+ez+x2y[y(zy+x2y2)x(zx+2xy)]\displaystyle e^{-z + \frac{x^2}{y}} = e^{-z + \frac{x^2}{y}} \frac{y^2 \cdot x^2}{2x \cdot y^2}(\frac{ \partial z}{\partial x}+\frac{2x}{y}) + e^{-z + \frac{x^2}{y}} [y(\frac{ \partial z}{\partial y}+\frac{x^2}{y^2}) -x(\frac{ \partial z}{\partial x}+\frac{2x}{y})]


1=x2(zx+2xy)+[y(zy+x2y2)x(zx+2xy)]\displaystyle 1 = \frac{ x}{2}(\frac{ \partial z}{\partial x}+\frac{2x}{y}) + [y(\frac{ \partial z}{\partial y}+\frac{x^2}{y^2}) -x(\frac{ \partial z}{\partial x}+\frac{2x}{y})]

1=x2(zx)+x2y+y(zy)+x2yxy(zx)2x2y\displaystyle 1 = \frac{ x}{2}(\frac{ \partial z}{\partial x})+\frac{x^2}{y} + y(\frac{ \partial z}{\partial y})+\frac{x^2}{y} -xy(\frac{ \partial z}{\partial x}) - \frac{2x^2}{y}

1=(x2xy)(zx)+y(zy)\displaystyle 1 = (\frac{ x}{2}-xy)(\frac{ \partial z}{\partial x})+ y(\frac{ \partial z}{\partial y})

(x2xy)(zx)+y(zy)=1\displaystyle (\frac{ x}{2}-xy)(\frac{ \partial z}{\partial x})+ y(\frac{ \partial z}{\partial y}) =1


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS