Question #127050
Find an explicit solution of the given initial-value problem

dy/dx = ye^(-x^2), y(5) = 1
1
Expert's answer
2020-07-27T18:55:46-0400

dydx=yex2\frac{dy}{dx} = ye^{-x^2}

dyy=ex2dx\frac{dy}{y} = e^{-x^2}dx

duy=ex2dx\int\frac{du}{y}=\int e{^{-x^2}}dx

But ex2dx\int e^{-x^2}dx  is a non elementary integral. We can express it as a power series

ex2=1x21!+x42!x63!+x84!..e^{-x^2}= 1 - \frac{x^2}{1!}+\frac{x^4}{2!}-\frac{x^6}{3!} +\frac{x^8}{4!}-..

We can approximate it as

ex2=1x21!+x42!x63!e^{-x^2}= 1 - \frac{x^2}{1!}+\frac{x^4}{2!}-\frac{x^6}{3!}

So differential equation transforms to

duy=\int\frac{du}{y}=\int (1x21!+x42!x63!)dx(1 - \frac{x^2}{1!}+\frac{x^4}{2!}-\frac{x^6}{3!})dx

=>ln|y| = xx33+x510x742+Cx - \frac{x^3}{3}+\frac{x^5}{10}-\frac{x^7}{42} + C

By initial condition y(5)=1

0 = 5533+55105742+C5 - \frac{5^3}{3}+\frac{5^5}{10}-\frac{5^7}{42} + C

C = 1584.286

So ln|y| = xx33+x510x742+1584.286x - \frac{x^3}{3}+\frac{x^5}{10}-\frac{x^7}{42} + 1584.286

=> y = e(xx33+x510x742+1584.286)e^{(x - \frac{x^3}{3}+\frac{x^5}{10}-\frac{x^7}{42} + 1584.286)}

This is the explicit solution of the given differential equation


ALTERNATIVELY\mathbf ALTERNATIVELY

dydx=yex2\frac{dy}{dx} = ye^{-x^2}

=> dyy=ex2dx\frac{dy}{y} = e^{-x^2}dx

=> duy=ex2dx\int\frac{du}{y}=\int e{^{-x^2}}dx

As ex2dx\int e{^{-x^2}}dx is not an elementary integral, we will express it as error function

=> ln|y| = (π2\frac{\sqrtπ}{2} ) erf(x) + C1, C1 is integration constant

Where erf(x) = 0xet2dt\int_0^x e{^{-t^2}}dt

So y = e(π2)erf(x)+C1e^{ (\frac{\sqrtπ}{2}) erf(x) + C_1}

=> y = Ce(π2)erf(x)e^{ (\frac{\sqrtπ}{2}) erf(x)}

By initial condition y (5)=1

1 = Ce(π2)erf(5)e^{ (\frac{\sqrtπ}{2}) erf(5) }

C = e(π2)erf(x)e^{ -(\frac{\sqrtπ}{2}) erf(x) }

So y = e(π2)erf(x)(π2)erf(5)e^{ (\frac{\sqrtπ}{2}) erf(x) - (\frac{\sqrtπ}{2}) erf(5) }

=> y = e(π2)[erf(x)erf(5)]e^{ (\frac{\sqrtπ}{2}) [erf(x) - erf(5) ]}

This is the explicit solution of the given differential equation


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS