d y d x = y e − x 2 \frac{dy}{dx} = ye^{-x^2} d x d y = y e − x 2
d y y = e − x 2 d x \frac{dy}{y} = e^{-x^2}dx y d y = e − x 2 d x
∫ d u y = ∫ e − x 2 d x \int\frac{du}{y}=\int e{^{-x^2}}dx ∫ y d u = ∫ e − x 2 d x
But ∫ e − x 2 d x \int e^{-x^2}dx ∫ e − x 2 d x is a non elementary integral. We can express it as a power series
e − x 2 = 1 − x 2 1 ! + x 4 2 ! − x 6 3 ! + x 8 4 ! − . . e^{-x^2}= 1 - \frac{x^2}{1!}+\frac{x^4}{2!}-\frac{x^6}{3!} +\frac{x^8}{4!}-.. e − x 2 = 1 − 1 ! x 2 + 2 ! x 4 − 3 ! x 6 + 4 ! x 8 − ..
We can approximate it as
e − x 2 = 1 − x 2 1 ! + x 4 2 ! − x 6 3 ! e^{-x^2}= 1 - \frac{x^2}{1!}+\frac{x^4}{2!}-\frac{x^6}{3!} e − x 2 = 1 − 1 ! x 2 + 2 ! x 4 − 3 ! x 6
So differential equation transforms to
∫ d u y = ∫ \int\frac{du}{y}=\int ∫ y d u = ∫ ( 1 − x 2 1 ! + x 4 2 ! − x 6 3 ! ) d x (1 - \frac{x^2}{1!}+\frac{x^4}{2!}-\frac{x^6}{3!})dx ( 1 − 1 ! x 2 + 2 ! x 4 − 3 ! x 6 ) d x
=>ln|y| = x − x 3 3 + x 5 10 − x 7 42 + C x - \frac{x^3}{3}+\frac{x^5}{10}-\frac{x^7}{42} + C x − 3 x 3 + 10 x 5 − 42 x 7 + C
By initial condition y(5)=1
0 = 5 − 5 3 3 + 5 5 10 − 5 7 42 + C 5 - \frac{5^3}{3}+\frac{5^5}{10}-\frac{5^7}{42} + C 5 − 3 5 3 + 10 5 5 − 42 5 7 + C
C = 1584.286
So ln|y| = x − x 3 3 + x 5 10 − x 7 42 + 1584.286 x - \frac{x^3}{3}+\frac{x^5}{10}-\frac{x^7}{42} + 1584.286 x − 3 x 3 + 10 x 5 − 42 x 7 + 1584.286
=> y = e ( x − x 3 3 + x 5 10 − x 7 42 + 1584.286 ) e^{(x - \frac{x^3}{3}+\frac{x^5}{10}-\frac{x^7}{42} + 1584.286)} e ( x − 3 x 3 + 10 x 5 − 42 x 7 + 1584.286 )
This is the explicit solution of the given differential equation
A L T E R N A T I V E L Y \mathbf ALTERNATIVELY A L TERN A T I V E L Y
d y d x = y e − x 2 \frac{dy}{dx} = ye^{-x^2} d x d y = y e − x 2
=> d y y = e − x 2 d x \frac{dy}{y} = e^{-x^2}dx y d y = e − x 2 d x
=> ∫ d u y = ∫ e − x 2 d x \int\frac{du}{y}=\int e{^{-x^2}}dx ∫ y d u = ∫ e − x 2 d x
As ∫ e − x 2 d x \int e{^{-x^2}}dx ∫ e − x 2 d x is not an elementary integral, we will express it as error function
=> ln|y| = (π 2 \frac{\sqrtπ}{2} 2 π ) erf(x) + C1 , C1 is integration constant
Where erf(x) = ∫ 0 x e − t 2 d t \int_0^x e{^{-t^2}}dt ∫ 0 x e − t 2 d t
So y = e ( π 2 ) e r f ( x ) + C 1 e^{ (\frac{\sqrtπ}{2}) erf(x) + C_1} e ( 2 π ) er f ( x ) + C 1
=> y = Ce ( π 2 ) e r f ( x ) e^{ (\frac{\sqrtπ}{2}) erf(x)} e ( 2 π ) er f ( x )
By initial condition y (5)=1
1 = Ce ( π 2 ) e r f ( 5 ) e^{ (\frac{\sqrtπ}{2}) erf(5) } e ( 2 π ) er f ( 5 )
C = e − ( π 2 ) e r f ( x ) e^{ -(\frac{\sqrtπ}{2}) erf(x) } e − ( 2 π ) er f ( x )
So y = e ( π 2 ) e r f ( x ) − ( π 2 ) e r f ( 5 ) e^{ (\frac{\sqrtπ}{2}) erf(x) - (\frac{\sqrtπ}{2}) erf(5) } e ( 2 π ) er f ( x ) − ( 2 π ) er f ( 5 )
=> y = e ( π 2 ) [ e r f ( x ) − e r f ( 5 ) ] e^{ (\frac{\sqrtπ}{2}) [erf(x) - erf(5) ]} e ( 2 π ) [ er f ( x ) − er f ( 5 )]
This is the explicit solution of the given differential equation
Comments