Question #127048
Solve the given initial-value problem

(3y + 2t - 5)dt + (4y+ 3t - 1)dy = 0, y(-1)=2
1
Expert's answer
2020-07-21T18:49:55-0400

D.E is

(3y+2t5)dt+(4y+3t1)dy=0(3y + 2t - 5)dt + (4y+ 3t - 1)dy = 0

Let,

y=y+k&t=t+hy=y'+k\&t=t'+h

Such that

2h+3k5=03h+4k1=02h+3k-5=0\\3h+4k-1=0

Thus, (h,k)=(13,7)(h,k)=(13,-7) and actual equation reduced to homogeneous equation such that

dydt=2t+3y3t+4y\frac{dy'}{dt'}=-\dfrac{2t'+3y'}{3t'+4y'}

Let,

y=vt    v+tdvdt=2+3v3+4v    dtt=4v+34v2+6v+2dv    lnt=12ln(2v2+3v+1)    ct2=12v2+3v+1    ct4=12y2+3yt+t2y'=vt'\implies v+t'\frac{dv}{dt'}=-\dfrac{2+3v}{3+4v}\\ \implies \frac{dt'}{t'}=-\dfrac{4v+3}{4v^2+6v+2}dv\\ \implies \ln|t'|=-\frac{1}{2}\ln|(2v^2+3v+1)|\\ \implies c t'^2=\frac{1}{2v^2+3v+1}\\ \implies ct'^4=\frac{1}{2y'^2+3y't'+t'^2}

But,

y=y+7&t=t13y'=y+7\&t'=t-13

Thus,

c(t13)4=12(y+7)2+3(y+7)(t13)+(t13)2c(t-13)^4=\frac{1}{2(y+7)^2+3(y+7)(t-13)+(t-13)^2}

As, y(1)=2y(-1)=2 ,thus

c=1144(20)c=\frac{1}{14^4(-20)}

Then the solution will be

120144=12(y+7)2+3(y+7)(t13)+(t13)2-\frac{1}{20\cdot14^4}=\frac{1}{2(y+7)^2+3(y+7)(t-13)+(t-13)^2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS