D.E is
(3y+2t−5)dt+(4y+3t−1)dy=0Let,
y=y′+k&t=t′+h Such that
2h+3k−5=03h+4k−1=0 Thus, (h,k)=(13,−7) and actual equation reduced to homogeneous equation such that
dt′dy′=−3t′+4y′2t′+3y′Let,
y′=vt′⟹v+t′dt′dv=−3+4v2+3v⟹t′dt′=−4v2+6v+24v+3dv⟹ln∣t′∣=−21ln∣(2v2+3v+1)∣⟹ct′2=2v2+3v+11⟹ct′4=2y′2+3y′t′+t′21 But,
y′=y+7&t′=t−13Thus,
c(t−13)4=2(y+7)2+3(y+7)(t−13)+(t−13)21 As, y(−1)=2 ,thus
c=144(−20)1 Then the solution will be
−20⋅1441=2(y+7)2+3(y+7)(t−13)+(t−13)21
Comments