y′′+4y′+4y=2cos2x+e−x Second order linear non-homogeneous differential equation . y=yh+ypyhis the solution to the homogeneous .y′′+4y′+4y=0r2+4r+4=0(r+2)2=0∴r1=r2=−2∴yh=c1e−2x+c2xe−2xyp is the particular solution is any function That satisfies the non-homogeneous equation .yp=Ae−x+Bcos2x+Csin2xyp′=−Ae−x−2Bsin2x+2Ccos2xyp′′=Ae−x−4Bcos2x−4Csin2x substite in The original equation Ae−x−4Bcos2x−4Csin2x−4Ae−x−8Bsin2x+8Ccos2x+4Ae−x+4Bcos2x+4Csin2x=2cos2x+e−x∴Ae−x−8Bsin2x+8Ccos2x=2cos2x+e−x∴A=1,−8B=0→B=0,8C=2→C=41∴yp=e−x+41sin2x∴y=yh+ypy=c1e−2x+c2xe−2x+41sin2x+e−xy′=−2c1e−2x+c2(−2xe−2x+e−2x)+21cos2x−e−xy(0)=−1∴−1=c1+1→c1=−2y′(0)=2∴2=−2c1+c2+21−1∴2=4+c2−21⇒c2=−23∴y=−2e−2x−23xe−2x+41sin2x+e−x
Comments