Question #126953
(2x+1)(x+1)d^2y/dx^2+2xdy/dx-2y=(2x+1)^2
1
Expert's answer
2020-07-20T18:53:42-0400

(2x+1)(x+1)y(x)+2xy(x)2y=(2x+1)2(2x+1)(x+1)y''(x)+2xy'(x)-2y=(2x+1)^2  



Ordinary differential equation classification: second-order linear ordinart differential equation.


Step by step solution:

1-step: Substitute 2=ddx(2x)d2dx((x+1)(2x+1)):-2= \tfrac{d}{dx} (2x) - \tfrac{d^2}{dx}((x+1)(2x+1)):


d2y(x)dx2(x+1)(2x+1)+2xdy(x)dx+(ddx(2x)d2dx2((x+1)(2x+1)))y(x)=(2x+1)2\tfrac{d^2 y(x)}{dx^2} (x+1)(2x+1)+2x \tfrac{dy(x)}{dx}+( \tfrac{d}{dx}(2x)- \tfrac{d^2}{dx^2}((x+1)(2x+1)))y(x) = (2x +1)^2


2-step: Expand


d2y(x)dx2(x+1)(2x+1)+2xdy(x)dx+ddx(2x)y(x)d2dx2((x+1)(2x+1))y(x)=(2x+1)2\tfrac{d^2 y(x)}{dx^2}(x+1)(2x+1)+2x\tfrac{dy(x)}{dx}+\tfrac{d}{dx}(2x)y(x)-\tfrac{d^2}{dx^2}((x+1)(2x+1))y(x)=(2x+1)^2


3-step: Add and subtract dy(x)dxddx((x+1)(2x+1))\tfrac{dy(x)}{dx}\tfrac{d}{dx}((x+1)(2x+1)) to the left hand sinde:


dy(x)dxddx((x+1)(2x+1))+d2y(x)dx2(x+1)(2x+1)+2xdy(x)dx+ddx(2x)y(x)dy(x)dxddx((x+1)(2x+1))d2dx2((x+1)(2x+1))y(x)=(2x+1)2\tfrac{dy(x)}{dx}\tfrac{d}{dx}((x+1)(2x+1))+\tfrac{d^2y(x)}{dx^2}(x+1)(2x+1)+2x\tfrac{dy(x)}{dx}+\tfrac{d}{dx}(2x)y(x)-\tfrac{dy(x)}{dx}\tfrac{d}{dx}((x+1)(2x+1))-\tfrac{d^2}{dx^2}((x+1)(2x+1))y(x)=(2x+1)^2


4-step: Apply the reverse product rule fdgdx+gdfdx=ddx(fg)f\tfrac{dg}{dx}+g\tfrac{df}{dx}=\tfrac{d}{dx}(fg) to the left-hand side:


ddx(dy(x)dx(x+1)(2x+1))+ddx(2xy(x))ddx((2x+2(x+1)+1)y(x))=(2x+1)2\tfrac{d}{dx}(\tfrac{dy(x)}{dx}(x+1)(2x+1))+\tfrac{d}{dx}(2xy(x))-\tfrac{d}{dx}((2x+2(x+1)+1)y(x))=(2x+1)^2


5-step: Factor:


ddx(dy(x)dx(x+1)(2x+1)+2xy(x)(2x+2(x+1)+1)y(x))=(2x+1)2\tfrac{d}{dx}(\tfrac{dy(x)}{dx}(x+1)(2x+1)+2xy(x)-(2x+2(x+1)+1)y(x))=(2x+1)^2


6-step: Integrate both sides with respect to x:


ddx(dy(x)dx(x+1)(2x+1)+2xy(x)(2x+2(x+1)+1)y(x))dx=(2x+1)2dx\int\tfrac{d}{dx}(\tfrac{dy(x)}{dx}(x+1)(2x+1)+2xy(x)-(2x+2(x+1)+1)y(x))dx=\int(2x+1)^2dx


7-step: Evalute the integrals:


dy(x)dx(x+1)(2x+1)+2xy(x)(2x+2(x+1)+1)y(x)=4x33+2x3+x+\tfrac{dy(x)}{dx}(x+1)(2x+1)+2xy(x)-(2x+2(x+1)+1)y(x)=\tfrac{4x^3}{3}+2x^3+x+ C1

where C1 is an arbitrary constant.

8-step: Rewrite the equation:


dy(x)dx+2(x+1)1)y(x)(x+1)(2x+1)=4x332x3xC(x+1)(2x+1)\tfrac{dy(x)}{dx}+\tfrac{-2(x+1)-1)y(x)}{(x+1)(2x+1)}=\tfrac{-\tfrac{4x^3}{3}-2x^3-x-C}{(x+1)(2x+1)}


9-step: Let μ(x)=exp(2(x+1)1(x+1)(2x+1)dx)=x+1(2x+1)2\mu(x)=exp(\int\tfrac{-2(x+1)-1}{(x+1)(2x+1)}dx)= \tfrac{x+1}{(2x+1)^2}

Multiply both sides by μ(x):\mu(x):

(x+1)dy(x)dx(2x+1)2+(2(x+1)1)y(x)(2x+1)3=4x332x3xC(2x+1)3\tfrac{(x+1)\tfrac{dy(x)}{dx}}{(2x+1)^2}+\tfrac{(-2(x+1)-1)y(x)}{(2x+1)^3}=-\tfrac{-\tfrac{4x^3}{3}-2x^3-x-C}{(2x+1)^3}


10-step: Substitute 2(x+1)1(2x+1)3=ddx(x+1(2x+1)2):\tfrac{-2(x+1)-1}{(2x+1)^3}=\tfrac{d}{dx}(\tfrac{x+1}{(2x+1)^2}):


(x+1)dy(x)dx(2x+1)2+ddx(x+1(2x+1)2)y(x)=4x332x3xC(2x+1)3\tfrac{(x+1)\tfrac{dy(x)}{dx}}{(2x+1)^2}+\tfrac{d}{dx}(\tfrac{x+1}{(2x+1)^2})y(x)=-\tfrac{-\tfrac{4x^3}{3}-2x^3-x-C}{(2x+1)^3}


11-step: Apply the reverse product rule fdgdx+gdfdx=ddx(fg)f\tfrac{dg}{dx}+g\tfrac{df}{dx}=\tfrac{d}{dx}(fg) to the ledt-hand side:


ddx((x+1)y(x)(2x+1)2=4x332x3xC(2x+1)3\tfrac{d}{dx}( \tfrac{(x+1)y(x)}{(2x+1)^2}= -\tfrac{-\tfrac{4x^3}{3}-2x^3-x-C}{(2x+1)^3}


12-step: Integrate both sides with respect to x:


ddx((x+1)y(x)(2x+1)2)dx=4x332x3xC1(2x+1)3dx\int\tfrac{d}{dx}(\tfrac{(x+1)y(x)}{(2x+1)^2})dx=\int-\tfrac{-\tfrac{4x^3}{3}-2x^3-x-C_{1}}{(2x+1)^3} dx


13 - step: Evaluate the integrals:


(x+1)y(x)(2x+1)2=13(14(2x+1)+6C1+18(2x+1)2)+\tfrac{(x+1)y(x)}{(2x+1)^2}=\tfrac{1}{3}(\tfrac{1}{4}(2x+1)+\tfrac{-6C_{1}+1}{8(2x+1)^2})+C2

where C2 is an arbitrary constant.


14-step: Divide both sides by μ(x)=x+1(2x+1)2:\mu(x)=\tfrac{x+1}{(2x+1)^2}:

y(x)=(2x+1)2(112(2x+1)+6C1+124(2x+1)2+C2)x+1y(x)=\tfrac{(2x+1)^2(\tfrac{1}{12}(2x+1)+\tfrac{-6C_{1}+1}{24(2x+1)^2}+C_{2})}{x+1}


15-step: Simplify the arbitrary constants:


y(x)=(2x+1)2(112(2x+1)+C1(2x+1)2+C2)x+1y(x)=\tfrac{(2x+1)^2(\tfrac{1}{12}(2x+1)+\tfrac{C_{1}}{(2x+1)^2}+C_{2})}{x+1}


Answer:
y(x)=C22x+1x2x1+C12x+1x2x1(x+1)+2x33(x+1)+x22(x+1)y(x) = \tfrac{C_{2}\sqrt{\smash[b]{2x+1}}x}{\sqrt{\smash[b]{-2x-1}}}+\tfrac{C_{1}\sqrt{\smash[b]{2x+1}}x}{\sqrt{\smash[b]{-2x-1}}(x+1)}+\tfrac{2x^3}{3(x+1)}+\tfrac{x^2}{2(x+1)}








Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS