(2x+1)(x+1)y′′(x)+2xy′(x)−2y=(2x+1)2
Ordinary differential equation classification: second-order linear ordinart differential equation.
1-step: Substitute −2=dxd(2x)−dxd2((x+1)(2x+1)):
dx2d2y(x)(x+1)(2x+1)+2xdxdy(x)+(dxd(2x)−dx2d2((x+1)(2x+1)))y(x)=(2x+1)2
2-step: Expand
dx2d2y(x)(x+1)(2x+1)+2xdxdy(x)+dxd(2x)y(x)−dx2d2((x+1)(2x+1))y(x)=(2x+1)2
3-step: Add and subtract dxdy(x)dxd((x+1)(2x+1)) to the left hand sinde:
dxdy(x)dxd((x+1)(2x+1))+dx2d2y(x)(x+1)(2x+1)+2xdxdy(x)+dxd(2x)y(x)−dxdy(x)dxd((x+1)(2x+1))−dx2d2((x+1)(2x+1))y(x)=(2x+1)2
4-step: Apply the reverse product rule fdxdg+gdxdf=dxd(fg) to the left-hand side:
dxd(dxdy(x)(x+1)(2x+1))+dxd(2xy(x))−dxd((2x+2(x+1)+1)y(x))=(2x+1)2
5-step: Factor:
dxd(dxdy(x)(x+1)(2x+1)+2xy(x)−(2x+2(x+1)+1)y(x))=(2x+1)2
6-step: Integrate both sides with respect to x:
∫dxd(dxdy(x)(x+1)(2x+1)+2xy(x)−(2x+2(x+1)+1)y(x))dx=∫(2x+1)2dx
7-step: Evalute the integrals:
dxdy(x)(x+1)(2x+1)+2xy(x)−(2x+2(x+1)+1)y(x)=34x3+2x3+x+ C1
where C1 is an arbitrary constant.
8-step: Rewrite the equation:
dxdy(x)+(x+1)(2x+1)−2(x+1)−1)y(x)=(x+1)(2x+1)−34x3−2x3−x−C
9-step: Let μ(x)=exp(∫(x+1)(2x+1)−2(x+1)−1dx)=(2x+1)2x+1
Multiply both sides by μ(x):
(2x+1)2(x+1)dxdy(x)+(2x+1)3(−2(x+1)−1)y(x)=−(2x+1)3−34x3−2x3−x−C
10-step: Substitute (2x+1)3−2(x+1)−1=dxd((2x+1)2x+1):
(2x+1)2(x+1)dxdy(x)+dxd((2x+1)2x+1)y(x)=−(2x+1)3−34x3−2x3−x−C
11-step: Apply the reverse product rule fdxdg+gdxdf=dxd(fg) to the ledt-hand side:
dxd((2x+1)2(x+1)y(x)=−(2x+1)3−34x3−2x3−x−C
12-step: Integrate both sides with respect to x:
∫dxd((2x+1)2(x+1)y(x))dx=∫−(2x+1)3−34x3−2x3−x−C1dx
13 - step: Evaluate the integrals:
(2x+1)2(x+1)y(x)=31(41(2x+1)+8(2x+1)2−6C1+1)+C2
where C2 is an arbitrary constant.
14-step: Divide both sides by μ(x)=(2x+1)2x+1:
y(x)=x+1(2x+1)2(121(2x+1)+24(2x+1)2−6C1+1+C2)
15-step: Simplify the arbitrary constants:
y(x)=x+1(2x+1)2(121(2x+1)+(2x+1)2C1+C2)
Comments