Question #126547
Solve the following differential equations cosx d²y/dx²+sinx dy/dx - 2ycos³x = 2cos^5 x
1
Expert's answer
2020-07-16T19:25:21-0400

cosxy+sinxy2ycos3x=2cos5x\cos xy''+\sin xy'-2y\cos^3x=2\cos^5x

Using a substitution

y=cos2x+1+z(x)y=sin2x+z(x)y=2cos2x+z(x)y=-\cos^2x+1+z(x)\\ y'=\sin2x+z'(x)\\ y''=2\cos2x+z''(x)

Then

cosx(2cos2x+z)+sinx(sin2x+z)2(cos2x+1+z)cos3x=2cos5xcosxz+sinxz2cos3xz=0\cos x(2\cos2x+z'')+\sin x(\sin2x+z')-\\ -2(-\cos^2x+1+z)\cos^3x=2\cos^5x\\ \cos xz''+\sin xz'-2\cos^3xz=0

Using a substitution

sinx=tx=sin1tz=ztxt=z1t2z=ztxt=(z(1t2)+z2t1t2)1t2\sin x=t\\ x=\sin^{-1}t\\ z'=\frac{z'_t}{x'_t}=z'\sqrt{1-t^2}\\ z''=\frac{z''_t}{x'_t}=(z''(1-t^2)+z'\frac{-2t}{\sqrt{1-t^2}})\sqrt{1-t^2}\\

Put it into the equation

(1t2)32(z2z)=0z2z=0λ22=0λ1=2λ2=2z=C1e2t+C2e2tz=C1e2sinx+C2e2sinxy=cos2x+1+C1e2sinx+C2e2sinx(1-t^2)^{\frac{3}{2}}(z''-2z)=0\\ z''-2z=0\\ \lambda^2-2=0\\ \lambda_1=\sqrt2\\ \lambda_2=-\sqrt2\\ z=C_1e^{\sqrt2 t}+C_2e^{-\sqrt2 t}\\ z=C_1e^{\sqrt2 \sin x}+C_2e^{-\sqrt2 \sin x}\\ y=-\cos^2 x+1+C_1e^{\sqrt2 \sin x}+C_2e^{-\sqrt2 \sin x}\\


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS