cos x y ′ ′ + sin x y ′ − 2 y cos 3 x = 2 cos 5 x \cos xy''+\sin xy'-2y\cos^3x=2\cos^5x cos x y ′′ + sin x y ′ − 2 y cos 3 x = 2 cos 5 x
Using a substitution
y = − cos 2 x + 1 + z ( x ) y ′ = sin 2 x + z ′ ( x ) y ′ ′ = 2 cos 2 x + z ′ ′ ( x ) y=-\cos^2x+1+z(x)\\
y'=\sin2x+z'(x)\\
y''=2\cos2x+z''(x) y = − cos 2 x + 1 + z ( x ) y ′ = sin 2 x + z ′ ( x ) y ′′ = 2 cos 2 x + z ′′ ( x )
Then
cos x ( 2 cos 2 x + z ′ ′ ) + sin x ( sin 2 x + z ′ ) − − 2 ( − cos 2 x + 1 + z ) cos 3 x = 2 cos 5 x cos x z ′ ′ + sin x z ′ − 2 cos 3 x z = 0 \cos x(2\cos2x+z'')+\sin x(\sin2x+z')-\\
-2(-\cos^2x+1+z)\cos^3x=2\cos^5x\\
\cos xz''+\sin xz'-2\cos^3xz=0 cos x ( 2 cos 2 x + z ′′ ) + sin x ( sin 2 x + z ′ ) − − 2 ( − cos 2 x + 1 + z ) cos 3 x = 2 cos 5 x cos x z ′′ + sin x z ′ − 2 cos 3 x z = 0
Using a substitution
sin x = t x = sin − 1 t z ′ = z t ′ x t ′ = z ′ 1 − t 2 z ′ ′ = z t ′ ′ x t ′ = ( z ′ ′ ( 1 − t 2 ) + z ′ − 2 t 1 − t 2 ) 1 − t 2 \sin x=t\\
x=\sin^{-1}t\\
z'=\frac{z'_t}{x'_t}=z'\sqrt{1-t^2}\\
z''=\frac{z''_t}{x'_t}=(z''(1-t^2)+z'\frac{-2t}{\sqrt{1-t^2}})\sqrt{1-t^2}\\ sin x = t x = sin − 1 t z ′ = x t ′ z t ′ = z ′ 1 − t 2 z ′′ = x t ′ z t ′′ = ( z ′′ ( 1 − t 2 ) + z ′ 1 − t 2 − 2 t ) 1 − t 2
Put it into the equation
( 1 − t 2 ) 3 2 ( z ′ ′ − 2 z ) = 0 z ′ ′ − 2 z = 0 λ 2 − 2 = 0 λ 1 = 2 λ 2 = − 2 z = C 1 e 2 t + C 2 e − 2 t z = C 1 e 2 sin x + C 2 e − 2 sin x y = − cos 2 x + 1 + C 1 e 2 sin x + C 2 e − 2 sin x (1-t^2)^{\frac{3}{2}}(z''-2z)=0\\
z''-2z=0\\
\lambda^2-2=0\\
\lambda_1=\sqrt2\\
\lambda_2=-\sqrt2\\
z=C_1e^{\sqrt2 t}+C_2e^{-\sqrt2 t}\\
z=C_1e^{\sqrt2 \sin x}+C_2e^{-\sqrt2 \sin x}\\
y=-\cos^2 x+1+C_1e^{\sqrt2 \sin x}+C_2e^{-\sqrt2 \sin x}\\ ( 1 − t 2 ) 2 3 ( z ′′ − 2 z ) = 0 z ′′ − 2 z = 0 λ 2 − 2 = 0 λ 1 = 2 λ 2 = − 2 z = C 1 e 2 t + C 2 e − 2 t z = C 1 e 2 s i n x + C 2 e − 2 s i n x y = − cos 2 x + 1 + C 1 e 2 s i n x + C 2 e − 2 s i n x
Comments