cosxy′′+sinxy′−2ycos3x=2cos5x
Using a substitution
y=−cos2x+1+z(x)y′=sin2x+z′(x)y′′=2cos2x+z′′(x)
Then
cosx(2cos2x+z′′)+sinx(sin2x+z′)−−2(−cos2x+1+z)cos3x=2cos5xcosxz′′+sinxz′−2cos3xz=0
Using a substitution
sinx=tx=sin−1tz′=xt′zt′=z′1−t2z′′=xt′zt′′=(z′′(1−t2)+z′1−t2−2t)1−t2
Put it into the equation
(1−t2)23(z′′−2z)=0z′′−2z=0λ2−2=0λ1=2λ2=−2z=C1e2t+C2e−2tz=C1e2sinx+C2e−2sinxy=−cos2x+1+C1e2sinx+C2e−2sinx
Comments