Question #126814
Find the general solution of the given differential equation

(x+!) dy/dx + (x+2)y = 2xe^-x

y = ______

Determine whether there are any transient terms in the general solution.
1
Expert's answer
2020-07-21T13:42:02-0400


Divide throughout by (x+1)(x+1) :

dydx+(x+2)(x+1)y=2xex(x+1)\frac{dy}{dx} + \frac{(x+2)}{(x+1)} y= \frac{2xe^{-x }}{(x + 1)}


IF=e(x+2)(x+1)dxIF = e^{\int \frac{(x+2)}{(x+1)}dx}


IF=e1+1(x+1)dxIF = e^{\int 1+ \frac{1}{(x+1)}dx}


IF=ex+lnx+1IF = e^{x+ln|x+1|}


IF=(x+1)exIF = (x + 1)e^{x}

Multiply throughout by the Integrating factor :


(x+1)ex[dydx+(x+2)(x+1)y=2xex(x+1)](x + 1)e^{x} * [\frac{dy}{dx} + \frac{(x+2)}{(x+1)} y = \frac{2xe^{-x} }{ (x + 1)}]


ddx(y(x+1)ex)=(x+1)ex2xex(x+1)\frac{d}{dx}(y (x + 1)e^{x}) = (x + 1)e^{x} \frac{2xe^{-x}}{(x + 1)}


ddx(y(x+1)ex)=2x\frac{d}{dx}(y (x + 1)e^{x}) =2x


Integrating :


y(x+1)ex=x2+Cy(x + 1)e^{x} = x^2 + C


y=x2+C(x+1)exy = \frac{x^2 + C}{(x+1)e^x}


Clearly, since we have the x+1x + 1 in denominator, x cannot be equal to -1

This splits number line into intervals (,1)(- \infin , -1) and (1,)(-1 , \infin)

out of which (1,)(-1 , \infin) is LARGER

So, (1,)(-1 , \infin)     \implies ANSWER


Both terms, x2(x+1)ex\frac{x^2}{(x+1)e^x} and C(x+1)ex\frac{C}{(x+1)e^x} are transient because as xx\to \infin , both of these terms tend to 0.


Answer: x2(x+1)ex,C(x+1)ex\frac{x^2}{(x+1)e^x},\frac{C}{(x+1)e^x} .




Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS