Question #126618
Solve
L^-1 × ((s^2 - 5s - 7)/(s + 2)^3)
1
Expert's answer
2020-07-20T18:00:00-0400

Given,

L1(s25s7(s+2)3)\mathscr{L^{-1}} \bigg(\dfrac{s^2 - 5s - 7}{(s + 2)^3}\bigg)

Thus,

    L1{1s+29(s+2)2+7(s+2)3}\implies\mathscr{L^{-1}}\left\{\frac{1}{s+2}-\frac{9}{\left(s+2\right)^2}+\frac{7}{\left(s+2\right)^3}\right\}    L1{1s+2}L1{9(s+2)2}+L1{7(s+2)3}\implies \mathscr{L^{-1}}\left\{\frac{1}{s+2}\right\}-\mathscr{L^{-1}}\left\{\frac{9}{\left(s+2\right)^2}\right\}+\mathscr{L^{-1}}\left\{\frac{7}{\left(s+2\right)^3}\right\}

    e2te2t9t+7e2tt22\implies e^{-2t}-e^{-2t}\cdot \:9t+\frac{7e^{-2t}t^2}{2}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS