Question #126613
Find the particular integral of
(x-1)^2 y" - 2(x-1)y' + 2y = (x-1)^2 y(0) = 3, y'(0) = 6
1
Expert's answer
2020-07-20T17:15:14-0400

Given D.E is

(x1)2y2(x1)y+2y=(x1)2,y(0)=3,y(0)=6(x-1)^2 y'' - 2(x-1)y' + 2y = (x-1)^2 \:,y(0) = 3, y'(0) = 6

Notice that solution of homogeneious equation (x1)2y2(x1)y+2y=0(x-1)^2 y'' - 2(x-1)y' + 2y =0 is

y1=(x1)y_1=(x-1)

We find second independent solution fron Liouville formula is

Wy1y2(x)=y1y2y1y2=C1e2(x1)(x1)2dx=C1(x1)2W_{y_1y_2}(x)=\begin{vmatrix} y_1&y_2\\y_1'&y_2' \end{vmatrix}=C_1e^{-\int \frac{-2(x-1)}{(x-1)^2}dx}=C_1(x-1)^2

Thus,

y1y2y1y2y12=C1(x1)2(x1)2=C1    (y2y1)=C1    y2=C1(x1)2+C2(x1)\dfrac{y_1y_2'-y_1'y_2}{y_1^2}=C_1\frac{(x-1)^2}{(x-1)^2}=C_1\implies (\frac{y_2}{y_1})'=C_1\\ \implies y_2=C_1(x-1)^2+C_2(x-1)

Hence, general solution of homogeneous equation is

yo(x)=C1(x1)2+C2(x1)y_o(x)=C_1(x-1)^2+C_2(x-1)

Now, using methood of variation of parameters and construct general solution of inhomogeneous equation ,

y1(x)andy2(x):y0(x)=C1y1(x)+C2y2(x),whereC1,C2are arbitrary constants.y_1 ( x ) \:\text{and}\: y_ 2 ( x ) : y_ 0 ( x ) = C_ 1 y_ 1 ( x ) + C_ 2 y_ 2 ( x ) , where \: C_ 1 , C_ 2 \:\text{are arbitrary constants.}

Thus,

The derivatives of the unknown functions C1(x)&C2(x)can be determined from the system of equations\text{The derivatives of the unknown functions } C_ 1 ( x ) \& C_ 2 ( x )\: \\ \text{can be determined from the system of equations}


C1(x)y1(x)+C2(x)y2(x)=0C1(x)y1(x)+C2(x)y2(x)=f(x)C^ ′_ 1 ( x ) y_ 1 ( x ) + C^ ′_ 2 ( x ) y_ 2 ( x ) = 0\\ C^ ′_ 1 ( x ) y^ ′_ 1 ( x ) + C^ ′_ 2 ( x ) y^ ′_ 2 ( x ) = f ( x )

Hence,

C1(x)=y2(x)f(x)Wy1,y2(x),    C2(x)=y1(x)f(x)Wy1,y2(x).{{C’_1}\left( x \right) = – \frac{{{y_2}\left( x \right)f\left( x \right)}}{{{W_{{y_1},{y_2}}}\left( x \right)}},\;\;}\kern-0.3pt {{C’_2}\left( x \right) = \frac{{{y_1}\left( x \right)f\left( x \right)}}{{{W_{{y_1},{y_2}}}\left( x \right)}}.}

Furthermore, knowing the derivatives of C1(x){C’_1}\left( x \right) and C2(x){C’_2}\left( x \right) ,one can find the C1(x)&C2(x)C_1(x)\& C_2(x) Thus,

C1(x)=y2(x)f(x)Wy1,y2(x)dx+A1,    C2(x)=y1(x)f(x)Wy1,y2(x)dx+A2{{{C_1}\left( x \right) }={ – \int {\frac{{{y_2}\left( x \right)f\left( x \right)}}{{{W_{{y_1},{y_2}}}\left( x \right)}}dx} }+{ {A_1},\;\;}}\kern-0.3pt {{{C_2}\left( x \right) }={ \int {\frac{{{y_1}\left( x \right)f\left( x \right)}}{{{W_{{y_1},{y_2}}}\left( x \right)}}dx} }+{ {A_2}}}

whereA1&A2A_1\&A_2 are constants of integration.Then the general solution of the original nonhomogeneous equation will be expressed by the formula


y(x)=C1(x)y1(x)+C2(x)y2(x)=[y2(x)f(x)Wy1,y2(x)dx+A1]y1(x)+[y1(x)f(x)Wy1,y2(x)dx+A2]y2(x)=A1y1(x)+A2y2(x)+Y(x){y\left( x \right) }={ {C_1}\left( x \right){y_1}\left( x \right) + {C_2}\left( x \right){y_2}\left( x \right) } = {{\left[ { – \int {\frac{{{y_2}\left( x \right)f\left( x \right)}}{{{W_{{y_1},{y_2}}}\left( x \right)}}dx} + {A_1}} \right] \cdot}\kern0pt{ {y_1}\left( x \right) }} +\\ {{\left[ {\int {\frac{{{y_1}\left( x \right)f\left( x \right)}}{{{W_{{y_1},{y_2}}}\left( x \right)}}dx} + {A_2}} \right] \cdot}\kern0pt{ {y_2}\left( x \right) }} = {{{A_1}{y_1}\left( x \right) + {A_2}{y_2}\left( x \right) }+{ Y\left( x \right)}}

Where,

Y(x)=y2(x)y1(x)f(x)Wy1,y2(x)dxy1(x)y2(x)f(x)Wy1,y2(x)dx{Y\left( x \right) } = {{y_2}\left( x \right)\int {\frac{{{y_1}\left( x \right)f\left( x \right)}}{{{W_{{y_1},{y_2}}}\left( x \right)}}dx} } – {{y_1}\left( x \right)\int {\frac{{{y_2}\left( x \right)f\left( x \right)}}{{{W_{{y_1},{y_2}}}\left( x \right)}}dx} }

Thus, from above fact by putting f(x)=(x1)2f(x)=(x-1)^2 and solving exactly as above we get the general solution is

C1(x1)(x+ln(x1))(x1)+C2x(x1)+xln(x1)(x1)C_1(x-1)-(x+\ln(x-1))(x-1)+C_2x(x-1)+x\ln(x-1)(x-1)

Thus particular solution is

(x1)(10x+ln(x1)xln(x1)+3πi+πxi)- (x-1)(10x+\ln(x-1)-x\ln(x - 1)+3-\pi i + \pi xi)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS