Given D.E is
( x − 1 ) 2 y ′ ′ − 2 ( x − 1 ) y ′ + 2 y = ( x − 1 ) 2 , y ( 0 ) = 3 , y ′ ( 0 ) = 6 (x-1)^2 y'' - 2(x-1)y' + 2y = (x-1)^2 \:,y(0) = 3, y'(0) = 6 ( x − 1 ) 2 y ′′ − 2 ( x − 1 ) y ′ + 2 y = ( x − 1 ) 2 , y ( 0 ) = 3 , y ′ ( 0 ) = 6 Notice that solution of homogeneious equation ( x − 1 ) 2 y ′ ′ − 2 ( x − 1 ) y ′ + 2 y = 0 (x-1)^2 y'' - 2(x-1)y' + 2y =0 ( x − 1 ) 2 y ′′ − 2 ( x − 1 ) y ′ + 2 y = 0 is
y 1 = ( x − 1 ) y_1=(x-1) y 1 = ( x − 1 ) We find second independent solution fron Liouville formula is
W y 1 y 2 ( x ) = ∣ y 1 y 2 y 1 ′ y 2 ′ ∣ = C 1 e − ∫ − 2 ( x − 1 ) ( x − 1 ) 2 d x = C 1 ( x − 1 ) 2 W_{y_1y_2}(x)=\begin{vmatrix}
y_1&y_2\\y_1'&y_2'
\end{vmatrix}=C_1e^{-\int \frac{-2(x-1)}{(x-1)^2}dx}=C_1(x-1)^2 W y 1 y 2 ( x ) = ∣ ∣ y 1 y 1 ′ y 2 y 2 ′ ∣ ∣ = C 1 e − ∫ ( x − 1 ) 2 − 2 ( x − 1 ) d x = C 1 ( x − 1 ) 2 Thus,
y 1 y 2 ′ − y 1 ′ y 2 y 1 2 = C 1 ( x − 1 ) 2 ( x − 1 ) 2 = C 1 ⟹ ( y 2 y 1 ) ′ = C 1 ⟹ y 2 = C 1 ( x − 1 ) 2 + C 2 ( x − 1 ) \dfrac{y_1y_2'-y_1'y_2}{y_1^2}=C_1\frac{(x-1)^2}{(x-1)^2}=C_1\implies (\frac{y_2}{y_1})'=C_1\\
\implies y_2=C_1(x-1)^2+C_2(x-1) y 1 2 y 1 y 2 ′ − y 1 ′ y 2 = C 1 ( x − 1 ) 2 ( x − 1 ) 2 = C 1 ⟹ ( y 1 y 2 ) ′ = C 1 ⟹ y 2 = C 1 ( x − 1 ) 2 + C 2 ( x − 1 ) Hence, general solution of homogeneous equation is
y o ( x ) = C 1 ( x − 1 ) 2 + C 2 ( x − 1 ) y_o(x)=C_1(x-1)^2+C_2(x-1) y o ( x ) = C 1 ( x − 1 ) 2 + C 2 ( x − 1 ) Now, using methood of variation of parameters and construct general solution of inhomogeneous equation ,
y 1 ( x ) and y 2 ( x ) : y 0 ( x ) = C 1 y 1 ( x ) + C 2 y 2 ( x ) , w h e r e C 1 , C 2 are arbitrary constants. y_1
(
x
)
\:\text{and}\:
y_
2
(
x
)
:
y_
0
(
x
)
=
C_
1
y_
1
(
x
)
+
C_
2
y_
2
(
x
)
,
where \:
C_
1
,
C_
2
\:\text{are arbitrary constants.} y 1 ( x ) and y 2 ( x ) : y 0 ( x ) = C 1 y 1 ( x ) + C 2 y 2 ( x ) , w h ere C 1 , C 2 are arbitrary constants.
Thus,
The derivatives of the unknown functions C 1 ( x ) & C 2 ( x ) can be determined from the system of equations \text{The derivatives of the unknown functions }
C_
1
(
x
)
\&
C_
2
(
x
)\:
\\ \text{can be determined from the system of equations} The derivatives of the unknown functions C 1 ( x ) & C 2 ( x ) can be determined from the system of equations
C 1 ′ ( x ) y 1 ( x ) + C 2 ′ ( x ) y 2 ( x ) = 0 C 1 ′ ( x ) y 1 ′ ( x ) + C 2 ′ ( x ) y 2 ′ ( x ) = f ( x ) C^
′_
1
(
x
)
y_
1
(
x
)
+
C^
′_
2
(
x
)
y_
2
(
x
)
=
0\\
C^
′_
1
(
x
)
y^
′_
1
(
x
)
+
C^
′_
2
(
x
)
y^
′_
2
(
x
)
=
f
(
x
) C 1 ′ ( x ) y 1 ( x ) + C 2 ′ ( x ) y 2 ( x ) = 0 C 1 ′ ( x ) y 1 ′ ( x ) + C 2 ′ ( x ) y 2 ′ ( x ) = f ( x ) Hence,
C ’ 1 ( x ) = – y 2 ( x ) f ( x ) W y 1 , y 2 ( x ) , C ’ 2 ( x ) = y 1 ( x ) f ( x ) W y 1 , y 2 ( x ) . {{C’_1}\left( x \right) = – \frac{{{y_2}\left( x \right)f\left( x \right)}}{{{W_{{y_1},{y_2}}}\left( x \right)}},\;\;}\kern-0.3pt
{{C’_2}\left( x \right) = \frac{{{y_1}\left( x \right)f\left( x \right)}}{{{W_{{y_1},{y_2}}}\left( x \right)}}.} C ’ 1 ( x ) = – W y 1 , y 2 ( x ) y 2 ( x ) f ( x ) , C ’ 2 ( x ) = W y 1 , y 2 ( x ) y 1 ( x ) f ( x ) .
Furthermore, knowing the derivatives of C ’ 1 ( x ) {C’_1}\left( x \right) C ’ 1 ( x ) and C ’ 2 ( x ) {C’_2}\left( x \right) C ’ 2 ( x ) ,one can find the C 1 ( x ) & C 2 ( x ) C_1(x)\& C_2(x) C 1 ( x ) & C 2 ( x ) Thus,
C 1 ( x ) = – ∫ y 2 ( x ) f ( x ) W y 1 , y 2 ( x ) d x + A 1 , C 2 ( x ) = ∫ y 1 ( x ) f ( x ) W y 1 , y 2 ( x ) d x + A 2 {{{C_1}\left( x \right) }={ – \int {\frac{{{y_2}\left( x \right)f\left( x \right)}}{{{W_{{y_1},{y_2}}}\left( x \right)}}dx} }+{ {A_1},\;\;}}\kern-0.3pt {{{C_2}\left( x \right) }={ \int {\frac{{{y_1}\left( x \right)f\left( x \right)}}{{{W_{{y_1},{y_2}}}\left( x \right)}}dx} }+{ {A_2}}} C 1 ( x ) = – ∫ W y 1 , y 2 ( x ) y 2 ( x ) f ( x ) d x + A 1 , C 2 ( x ) = ∫ W y 1 , y 2 ( x ) y 1 ( x ) f ( x ) d x + A 2 whereA 1 & A 2 A_1\&A_2 A 1 & A 2 are constants of integration.Then the general solution of the original nonhomogeneous equation will be expressed by the formula
y ( x ) = C 1 ( x ) y 1 ( x ) + C 2 ( x ) y 2 ( x ) = [ – ∫ y 2 ( x ) f ( x ) W y 1 , y 2 ( x ) d x + A 1 ] ⋅ y 1 ( x ) + [ ∫ y 1 ( x ) f ( x ) W y 1 , y 2 ( x ) d x + A 2 ] ⋅ y 2 ( x ) = A 1 y 1 ( x ) + A 2 y 2 ( x ) + Y ( x ) {y\left( x \right) }={ {C_1}\left( x \right){y_1}\left( x \right) + {C_2}\left( x \right){y_2}\left( x \right) }
= {{\left[ { – \int {\frac{{{y_2}\left( x \right)f\left( x \right)}}{{{W_{{y_1},{y_2}}}\left( x \right)}}dx} + {A_1}} \right] \cdot}\kern0pt{ {y_1}\left( x \right) }}
+\\ {{\left[ {\int {\frac{{{y_1}\left( x \right)f\left( x \right)}}{{{W_{{y_1},{y_2}}}\left( x \right)}}dx} + {A_2}} \right] \cdot}\kern0pt{ {y_2}\left( x \right) }}
= {{{A_1}{y_1}\left( x \right) + {A_2}{y_2}\left( x \right) }+{ Y\left( x \right)}} y ( x ) = C 1 ( x ) y 1 ( x ) + C 2 ( x ) y 2 ( x ) = [ – ∫ W y 1 , y 2 ( x ) y 2 ( x ) f ( x ) d x + A 1 ] ⋅ y 1 ( x ) + [ ∫ W y 1 , y 2 ( x ) y 1 ( x ) f ( x ) d x + A 2 ] ⋅ y 2 ( x ) = A 1 y 1 ( x ) + A 2 y 2 ( x ) + Y ( x ) Where,
Y ( x ) = y 2 ( x ) ∫ y 1 ( x ) f ( x ) W y 1 , y 2 ( x ) d x – y 1 ( x ) ∫ y 2 ( x ) f ( x ) W y 1 , y 2 ( x ) d x {Y\left( x \right) }
= {{y_2}\left( x \right)\int {\frac{{{y_1}\left( x \right)f\left( x \right)}}{{{W_{{y_1},{y_2}}}\left( x \right)}}dx} }
– {{y_1}\left( x \right)\int {\frac{{{y_2}\left( x \right)f\left( x \right)}}{{{W_{{y_1},{y_2}}}\left( x \right)}}dx} } Y ( x ) = y 2 ( x ) ∫ W y 1 , y 2 ( x ) y 1 ( x ) f ( x ) d x – y 1 ( x ) ∫ W y 1 , y 2 ( x ) y 2 ( x ) f ( x ) d x Thus, from above fact by putting f ( x ) = ( x − 1 ) 2 f(x)=(x-1)^2 f ( x ) = ( x − 1 ) 2 and solving exactly as above we get the general solution is
C 1 ( x − 1 ) − ( x + ln ( x − 1 ) ) ( x − 1 ) + C 2 x ( x − 1 ) + x ln ( x − 1 ) ( x − 1 ) C_1(x-1)-(x+\ln(x-1))(x-1)+C_2x(x-1)+x\ln(x-1)(x-1) C 1 ( x − 1 ) − ( x + ln ( x − 1 )) ( x − 1 ) + C 2 x ( x − 1 ) + x ln ( x − 1 ) ( x − 1 ) Thus particular solution is
− ( x − 1 ) ( 10 x + ln ( x − 1 ) − x ln ( x − 1 ) + 3 − π i + π x i ) - (x-1)(10x+\ln(x-1)-x\ln(x - 1)+3-\pi i + \pi xi) − ( x − 1 ) ( 10 x + ln ( x − 1 ) − x ln ( x − 1 ) + 3 − πi + π x i )
Comments