Question #126368

d²V/dt² -4V = 8e^(2t)

When t=0 and V=4 and dV/dt = 6


1
Expert's answer
2020-07-16T18:20:00-0400

This is a second order differential equation with constant coefficients. The characteristic polynomial of the homogeneous equation is r24=0r^2-4=0. The roots of this polynomials are r1=2 and r2=2r_1=2 \text{ and } r_2=-2. The general solution of the homogeneous equation is then V=c1e2t+c2e2tV = c_1e^{2t}+c_2e^{-2t}.

A particular solution of the nonhomogeneous equation is cte2tcte^{2t}, where cc is a constant. To determine it, we replace V=cte2t and d2Vdt2=4c(1+t)e2tV=cte^{2t} \text{ and }\frac{d^2V}{dt^2}=4c(1+t)e^{2t} in the equation, we obtain

4c(1+t)e2t4cte2t=8t    4ce2t=8e2t    c=2.4c(1+t)e^{2t}-4cte^{2t}=8t\implies 4ce^{2t}=8e^{2t}\implies c=2.

The solution is then

V(t)=c1e2t+c2e2t+2te2t.V(t) = c_1e^{2t}+c_2e^{-2t}+2te^{2t}.

To determine c1 and c2c_1\text{ and }c_2 we use the initial conditions:

V(0)=c1+c2=4V(0) = c_1+c_2=4 and

dVdt=(2c1+4t+2)e2t2c2e2tdVdt(0)=2c12c2+2=6c1c2=2\frac{dV}{dt}=(2c_1+4t+2)e^{2t}-2c_2e^{-2t}\Rightarrow\frac{dV}{dt}(0)=2c_1-2c_2+2=6\Rightarrow c_1-c_2=2.

Then c1=3 and c2=1c_1=3\text{ and }c_2=1. We obtain finally

V(t)=3e2t+e2t+2te2t.V(t)=3e^{2t}+e^{-2t}+2te^{2t}.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS