Answer to Question #126304 in Differential Equations for jse

Question #126304
1. Solve the given differential equation by using an appropriate substitution. The DE is a Bernoulli equation

x dy/dx - (1+x)y = x(y)^2


2. Solve the given initial-value problem. The DE is a Bernoulli equation.

x^2 dy/dx - 2xy = 4y^4, y(1)= 1/2
1
Expert's answer
2020-07-20T17:49:13-0400

Question 1: xdydx(x+1)y=xy2x\frac{dy}{dx}-(x+1)y=xy^2

Solution: Dividing equation by xy2-xy^2 :

y2y+x+1xy1=1-y^{-2}y'+\frac{x+1}xy^{-1}=-1

Substituting z=y12=y1z=y^{1-2}=y^{-1} , dzdx=z=y2y\frac{dz}{dx}=z'=-y^{-2}y' , therefore: (1)

z+x+1xz=1z'+\frac{x+1}{x}z=-1

Substituting z=uvz=uv , z=uv+uvz'=u'v+uv' : (2)

uv+uv+x+1xuv=1u'v+uv'+\frac{x+1}{x}uv=-1

uv+u(v+x+1xv)=1u'v+u(v'+\frac{x+1}{x}v)=-1 (3)

Setting the part inside () to 0 and separating variables:

v+x+1xv=0v'+\frac{x+1}{x}v=0

dvdx=x+1xv\frac{dv}{dx}=- \frac{x+1}{x}v

dvv=x+1xdx\int\frac{dv}v = -\int\frac{x+1}{x}dx

ln(v)=(x+ln(x)+ln(k))ln(v)=-(x+ln(x)+ln(k))

v=e(x+ln(x))=1kxexv=e^{-(x+ln(x))}=\frac1 {kxe^x} (4)

Putting vv from (4) into equation (3):

1kxexu=1\frac1 {kxe^x}u'=-1

du=kxex\int du=-k\int xe^x

u=k(xexex+ex+C)=k(ex(x1)+C)u=-k(xe^x-e^x+e^x+C)=-k(e^x(x-1)+C)

Finding z from (2):

z=uv=(ex(x1)+C)xexz=uv=\frac{-(e^x(x-1)+C)}{xe^x}

Finding y from (1):

y=z1=xexex(x1)+Cy=z^{-1}=-\frac{xe^x}{e^x(x-1)+C}

Answer 1: y=xexex(x1)+Cy=-\frac{xe^x}{e^x(x-1)+C}


Question 2: x2y2xy=4y4x^2y'-2xy=4y^4 , y(1)=12y(1)=\frac 12

Solution: Dividing equation by 13x2y4-\frac1 3 x^2 y^4 :

3y4y+6xy3=12x2-3y^{-4}y'+\frac 6 x y^{-3}=-\frac {12} {x^2}

Substituting z=y3z=y^{-3} , z=3y4yz'=-3y^{-4}y', therefore: (1)

z+6xz=12x2z'+\frac6xz=-\frac{12}{x^2}

Substituting z=uv,z=uv+uvz=uv , z'=u'v+uv' : (2)

uv+uv+6xuv=12x2u'v+uv'+\frac6xuv=-\frac{12}{x^2}

uv+u(v+6xv)=12x2u'v+u(v'+\frac6xv)=-\frac{12}{x^2} (3)

Setting the part inside () to 0 and separating variables:

v+6xv=0v'+\frac6xv=0 (4)

v=6xvv'=-\frac6xv

dvv=6dxx\int \frac {dv} v = -6 \int \frac {dx} x

ln(v)=6ln(x)ln(k)=ln(kx6)ln(v)= -6 ln(x)-ln(k)=ln(kx^{-6})

v=1kx6v=\frac 1 {kx^6}

Putting vv from (4) into equation (3):

1kx6u=12x2\frac 1 {kx^6}u'=-\frac{12}{x^2}

du=12kx4dx\int du = \int -12kx^4dx

u=k(12x55+C)u= k(-\frac {12x^5}5+C)

Finding z from (2):

z=uv=(12x55+C)1x6z=uv=-(\frac {12x^5}5+C)*\frac1{x^6}

Finding y from (1):

y=5x612x5+5C3y=\sqrt[3]{\frac{5x^6}{12x^5+5C}}

Assuming ​ y(1)=12y(1)=\frac 12 : 5(1)612(1)5+5C3=12\sqrt[3]{\frac{5*(1)^6}{12*(1)^5+5C}}=\frac12

512+5C3=12\sqrt[3]{\frac{5}{12+5C}}=\frac12

512+5C=18\frac{5}{12+5C}=\frac18

C=525C=\frac{52}5

Substitute C into general solution:

y=5x612x5+523y=\sqrt[3]{\frac{5x^6}{12x^5+52}}

Answer 2: y=5x612x5+523y=\sqrt[3]{\frac{5x^6}{12x^5+52}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!

Leave a comment