Question 1: xdxdy−(x+1)y=xy2
Solution: Dividing equation by −xy2 :
−y−2y′+xx+1y−1=−1
Substituting z=y1−2=y−1 , dxdz=z′=−y−2y′ , therefore: (1)
z′+xx+1z=−1
Substituting z=uv , z′=u′v+uv′ : (2)
u′v+uv′+xx+1uv=−1
u′v+u(v′+xx+1v)=−1 (3)
Setting the part inside () to 0 and separating variables:
v′+xx+1v=0
dxdv=−xx+1v
∫vdv=−∫xx+1dx
ln(v)=−(x+ln(x)+ln(k))
v=e−(x+ln(x))=kxex1 (4)
Putting v from (4) into equation (3):
kxex1u′=−1
∫du=−k∫xex
u=−k(xex−ex+ex+C)=−k(ex(x−1)+C)
Finding z from (2):
z=uv=xex−(ex(x−1)+C)
Finding y from (1):
y=z−1=−ex(x−1)+Cxex
Answer 1: y=−ex(x−1)+Cxex
Question 2: x2y′−2xy=4y4 , y(1)=21
Solution: Dividing equation by −31x2y4 :
−3y−4y′+x6y−3=−x212
Substituting z=y−3 , z′=−3y−4y′, therefore: (1)
z′+x6z=−x212
Substituting z=uv,z′=u′v+uv′ : (2)
u′v+uv′+x6uv=−x212
u′v+u(v′+x6v)=−x212 (3)
Setting the part inside () to 0 and separating variables:
v′+x6v=0 (4)
v′=−x6v
∫vdv=−6∫xdx
ln(v)=−6ln(x)−ln(k)=ln(kx−6)
v=kx61
Putting v from (4) into equation (3):
kx61u′=−x212
∫du=∫−12kx4dx
u=k(−512x5+C)
Finding z from (2):
z=uv=−(512x5+C)∗x61
Finding y from (1):
y=312x5+5C5x6
Assuming y(1)=21 : 312∗(1)5+5C5∗(1)6=21
312+5C5=21
12+5C5=81
C=552
Substitute C into general solution:
y=312x5+525x6
Answer 2: y=312x5+525x6
Comments
Leave a comment