Solution
(2D3+3D2D′+4DD′2+5D′3)z=x2+y
The PDE is a homogeneous linear differential equation,thus auxilary equation is;
2m3+3m2+4m+5=0 ∴ ⟹m1=21(−1+32/3(−63+21086)1/3−(3(−63+21086))1/35)
m2=−21−(1+4∗32/3(1+i3)(−63+21086)1/3+4(3(−63+21086))1/35(1−i3))
m3=−21−(1+4∗32/3(1−i3)(−63+21086)1/3+4(3(−63+21086))1/35(1+i3))
Hence,
C.F=f1(y+m1x)+f2(y+m2x)+f3(y+m3x)
Now;
(P.I)1=2D3+3D2D′+4DD′2+5D′3x2
⟹2D31(1+(2D3D′+2(DD′)2+25(DD′)2))−1(x2)=2D31(x2)=120x5
For(P.I)2;
(P.I)2=2D3+3D2D′+4DD′2+5D′3y
⟹5D′31(1+(5D′4D+53(D′D)2+52(D′D)2))−1(y)=5D′31(y)=120y4
Hence,
C.F+(P.I)1+(P.I)2 ⟹∑i=13fi(y+mix)+1201(x5+y4)
Comments