The given equation can be written as, (D2+4)y=t2+6et. The auxiliary equation is, m2+4=0. Solving, we get m=±2i. The complementary function is,
C.F=c1cos(2t)+c2sin(2t). The particular integral is given by,
P.I=D2+41(t2+6et)=D2+41⋅t2+D2+41⋅6et=41(1+4D2)−1⋅t2+56et=41(1−4D2+⋯)⋅t2+56et=41(t2−21)+56et=4t2+56et−81
The general solution is, y=c1cos(2t)+c2sin(2t)+4t2+56et−81.
Hence, y′=−2c1sin(2t)+2c2cos(2t)+2t+56et .
Given the initial conditions, y(0)=0,y′(0)=5. Using the initial conditions we get,
y(0)0c1=c1+56−81=c1+56−81=−4043
y′(0)52c2c2=2c2+56=2c2+56=5−56=1019
Hence, the general solution is,
yy=1019sin(2t)−4043cos(2t)+4t2+56et−81=401(76sin(2t)−43cos(2t)+10t2+48et−5)
Comments