Question #125757
Find the solution of the initial value problem y′′+4y=t^2+6e^t, y(0)=0, y′(0)=5.
Enter an exact answer.
Enclose arguments of functions in parentheses. For example, sin(2x).
1
Expert's answer
2020-07-09T19:32:39-0400

The given equation can be written as, (D2+4)y=t2+6et\left(D^{2}+4\right) y=t^{2}+6e^{t}. The auxiliary equation is, m2+4=0m^{2}+4=0. Solving, we get m=±2im=\pm 2i. The complementary function is,

C.F=c1cos(2t)+c2sin(2t).C.F=c_{1} \cos (2 t)+c_{2} \sin (2 t). The particular integral is given by,

P.I=1D2+4(t2+6et)=1D2+4t2+1D2+46et=14(1+D24)1t2+6et5=14(1D24+)t2+6et5=14(t212)+6et5=t24+6et518\begin{aligned} P.I &=\frac{1}{D^{2}+4}\left(t^{2}+6 e^{t}\right) \\ &=\frac{1}{D^{2}+4} \cdot t^{2}+\frac{1}{D^{2}+4} \cdot 6 e^{t} \\ &=\frac{1}{4}\left(1+\frac{D^{2}}{4}\right)^{-1} \cdot t^{2}+\frac{6 e^{t}}{5} \\ &=\frac{1}{4}\left(1-\frac{D^{2}}{4}+\cdots\right) \cdot t^{2}+\frac{6 e^{t}}{5} \\ &=\frac{1}{4}\left(t^{2}-\frac{1}{2}\right)+\frac{6 e^{t}}{5} \\ &=\frac{t^{2}}{4}+\frac{6 e^{t}}{5}-\frac{1}{8} \end{aligned}

The general solution is, y=c1cos(2t)+c2sin(2t)+t24+6et518\displaystyle y=c_{1} \cos (2 t)+c_{2} \sin (2 t)+\frac{t^{2}}{4}+\frac{6 e^{t}}{5}-\frac{1}{8}.

Hence, y=2c1sin(2t)+2c2cos(2t)+t2+6et5\displaystyle y'=-2 c_{1} \sin (2 t)+2 c_{2} \cos (2 t)+\frac{t}{2}+\frac{6 e^{t}}{5} .


Given the initial conditions, y(0)=0,y(0)=5y(0)=0, y^{\prime}(0)=5. Using the initial conditions we get,


y(0)=c1+65180=c1+6518c1=4340\begin{aligned} \displaystyle y(0) & = c_{1} +\frac{6 }{5}-\frac{1}{8}\\ 0&=c_{1} +\frac{6 }{5}-\frac{1}{8}\\ c_{1}&=-\frac{43}{40} \end{aligned}

y(0)=2c2+655=2c2+652c2=565c2=1910\begin{aligned} \displaystyle y'(0) & = 2c_{2} +\frac{6 }{5}\\ 5&=2c_{2} +\frac{6}{5}\\ 2c_{2}&= 5-\frac{6}{5}\\ c_{2}&=\frac{19}{10} \end{aligned}

Hence, the general solution is,

y=1910sin(2t)4340cos(2t)+t24+6et518y=140(76sin(2t)43cos(2t)+10t2+48et5)\begin{aligned} y&=\frac{19}{10} \sin (2 t)-\frac{43}{40} \cos (2 t)+\frac{t^{2}}{4}+\frac{6 e^{t}}{5}-\frac{1}{8}\\ y&=\frac{1}{40}\bigg(76 \sin (2 t)-43 \cos (2 t)+10 t^{2}+48 e^{t}-5\bigg) \end{aligned}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS