Given PDE is
(2D3+3D2D′+4DD′2+5D′3)z=x2+y It's a homogeneous linear diffrential equation,thus auxilary equation is
2m3+3m2+4m+5=0
Thus, ⟹m1=21(−1+32/3(−63+21086)1/3−(3(−63+21086))1/35
m2=−21−4×32/3(1+i3)(−63+21086)1/3+4(3(−63+21086))1/35(1−i3
m3=−21−4×32/3(1−i3)(−63+21086)1/3+4(3(−63+21086))1/35(1+i3
Hence,
C.F=f1(y+m1x)+f2(y+m2x)+f3(y+m3x) Now,
(P.I)1=2D3+3D2D′+4DD′2+5D′3x2=2D31(1+(2D3D′+2(DD′)2+25(DD′)2))−1(x2)=2D31(x2)=120x5 Similarly,
(P.I)2=2D3+3D2D′+4DD′2+5D′3y=5D′31(1+(5D′4D+53(D′D)2+52(D′D)2))−1(y)=5D′31(y)=120y4 Thus, complete solution is
C.F+(P.I)1+(P.I)2 which is
i=1∑3fi(y+mix)+1201(x5+y4)
Comments