Given PDE is
( 2 D 3 + 3 D 2 D ′ + 4 D D ′ 2 + 5 D ′ 3 ) z = x 2 + y (2D^3+3D^2D'+4DD'^2+5D'^3)z=x^2+y ( 2 D 3 + 3 D 2 D ′ + 4 D D ′2 + 5 D ′3 ) z = x 2 + y It's a homogeneous linear diffrential equation,thus auxilary equation is
2 m 3 + 3 m 2 + 4 m + 5 = 0 2m^3+3m^2+4m+5=0\\ 2 m 3 + 3 m 2 + 4 m + 5 = 0
Thus, ⟹ m 1 = 1 2 ( − 1 + ( − 63 + 2 1086 ) 1 / 3 3 2 / 3 − 5 ( 3 ( − 63 + 2 1086 ) ) 1 / 3 \implies m_1=\frac{1}{2} (-1 + \frac{(-63 + 2\sqrt{1086})^{1/3}}{3^{2/3}} - \frac{5}{(3 (-63 + 2\sqrt{1086}))^{1/3}}\\ ⟹ m 1 = 2 1 ( − 1 + 3 2/3 ( − 63 + 2 1086 ) 1/3 − ( 3 ( − 63 + 2 1086 ) ) 1/3 5
m 2 = − 1 2 − ( 1 + i 3 ) ( − 63 + 2 1086 ) 1 / 3 4 × 3 2 / 3 + 5 ( 1 − i 3 4 ( 3 ( − 63 + 2 1086 ) ) 1 / 3 m_2=-\frac{1}{2} -\frac{(1+i\sqrt{3})(-63 + 2\sqrt{1086})^{1/3}}{4\times3^{2/3}} +\frac{5(1-i\sqrt{3}}{4(3 (-63 + 2\sqrt{1086}))^{1/3}}\\ m 2 = − 2 1 − 4 × 3 2/3 ( 1 + i 3 ) ( − 63 + 2 1086 ) 1/3 + 4 ( 3 ( − 63 + 2 1086 ) ) 1/3 5 ( 1 − i 3
m 3 = − 1 2 − ( 1 − i 3 ) ( − 63 + 2 1086 ) 1 / 3 4 × 3 2 / 3 + 5 ( 1 + i 3 4 ( 3 ( − 63 + 2 1086 ) ) 1 / 3 m_3=-\frac{1}{2} -\frac{(1-i\sqrt{3})(-63 + 2\sqrt{1086})^{1/3}}{4\times3^{2/3}} +\frac{5(1+i\sqrt{3}}{4(3 (-63 + 2\sqrt{1086}))^{1/3}}\\ m 3 = − 2 1 − 4 × 3 2/3 ( 1 − i 3 ) ( − 63 + 2 1086 ) 1/3 + 4 ( 3 ( − 63 + 2 1086 ) ) 1/3 5 ( 1 + i 3
Hence,
C . F = f 1 ( y + m 1 x ) + f 2 ( y + m 2 x ) + f 3 ( y + m 3 x ) C.F=f_1(y+m_1x)+f_2(y+m_2x)+f_3(y+m_3x) C . F = f 1 ( y + m 1 x ) + f 2 ( y + m 2 x ) + f 3 ( y + m 3 x ) Now,
( P . I ) 1 = x 2 2 D 3 + 3 D 2 D ′ + 4 D D ′ 2 + 5 D ′ 3 = 1 2 D 3 ( 1 + ( 3 D ′ 2 D + 2 ( D ′ D ) 2 + 5 2 ( D ′ D ) 2 ) ) − 1 ( x 2 ) = 1 2 D 3 ( x 2 ) = x 5 120 (P.I)_1=\frac{x^2}{2D^3+3D^2D'+4DD'^2+5D'^3}\\
=\frac{1}{2D^3}\bigg(1+\bigg(\frac{3D'}{2D}+2\bigg(\frac{D'}{D}\bigg)^2+\frac{5}{2}\bigg(\frac{D'}{D}\bigg)^2\bigg)\bigg)^{-1}(x^2)\\
=\frac{1}{2D^3}(x^2)=\frac{x^5}{120} ( P . I ) 1 = 2 D 3 + 3 D 2 D ′ + 4 D D ′2 + 5 D ′3 x 2 = 2 D 3 1 ( 1 + ( 2 D 3 D ′ + 2 ( D D ′ ) 2 + 2 5 ( D D ′ ) 2 ) ) − 1 ( x 2 ) = 2 D 3 1 ( x 2 ) = 120 x 5 Similarly,
( P . I ) 2 = y 2 D 3 + 3 D 2 D ′ + 4 D D ′ 2 + 5 D ′ 3 = 1 5 D ′ 3 ( 1 + ( 4 D 5 D ′ + 3 5 ( D D ′ ) 2 + 2 5 ( D D ′ ) 2 ) ) − 1 ( y ) = 1 5 D ′ 3 ( y ) = y 4 120 (P.I)_2=\frac{y}{2D^3+3D^2D'+4DD'^2+5D'^3}\\
=\frac{1}{5D'^3}\bigg(1+\bigg(\frac{4D}{5D'}+\frac{3}{5}\bigg(\frac{D}{D'}\bigg)^2+\frac{2}{5}\bigg(\frac{D}{D'}\bigg)^2\bigg)\bigg)^{-1}(y)\\
=\frac{1}{5D'^3}(y)=\frac{y^4}{120} ( P . I ) 2 = 2 D 3 + 3 D 2 D ′ + 4 D D ′2 + 5 D ′3 y = 5 D ′3 1 ( 1 + ( 5 D ′ 4 D + 5 3 ( D ′ D ) 2 + 5 2 ( D ′ D ) 2 ) ) − 1 ( y ) = 5 D ′3 1 ( y ) = 120 y 4 Thus, complete solution is
C . F + ( P . I ) 1 + ( P . I ) 2 C.F+(P.I)_1+(P.I)_2 C . F + ( P . I ) 1 + ( P . I ) 2 which is
∑ i = 1 3 f i ( y + m i x ) + 1 120 ( x 5 + y 4 ) \sum_{i=1}^{3}f_i(y+m_ix)+\frac{1}{120}(x^5+y^4) i = 1 ∑ 3 f i ( y + m i x ) + 120 1 ( x 5 + y 4 )
Comments