Question #125701
(2D^3+3D^2D'+4DD'^2+5D'^3)z=x^2+y
1
Expert's answer
2020-07-12T17:23:23-0400

Given PDE is

(2D3+3D2D+4DD2+5D3)z=x2+y(2D^3+3D^2D'+4DD'^2+5D'^3)z=x^2+y

It's a homogeneous linear diffrential equation,thus auxilary equation is

2m3+3m2+4m+5=02m^3+3m^2+4m+5=0\\

Thus,     m1=12(1+(63+21086)1/332/35(3(63+21086))1/3\implies m_1=\frac{1}{2} (-1 + \frac{(-63 + 2\sqrt{1086})^{1/3}}{3^{2/3}} - \frac{5}{(3 (-63 + 2\sqrt{1086}))^{1/3}}\\

m2=12(1+i3)(63+21086)1/34×32/3+5(1i34(3(63+21086))1/3m_2=-\frac{1}{2} -\frac{(1+i\sqrt{3})(-63 + 2\sqrt{1086})^{1/3}}{4\times3^{2/3}} +\frac{5(1-i\sqrt{3}}{4(3 (-63 + 2\sqrt{1086}))^{1/3}}\\

m3=12(1i3)(63+21086)1/34×32/3+5(1+i34(3(63+21086))1/3m_3=-\frac{1}{2} -\frac{(1-i\sqrt{3})(-63 + 2\sqrt{1086})^{1/3}}{4\times3^{2/3}} +\frac{5(1+i\sqrt{3}}{4(3 (-63 + 2\sqrt{1086}))^{1/3}}\\

Hence,

C.F=f1(y+m1x)+f2(y+m2x)+f3(y+m3x)C.F=f_1(y+m_1x)+f_2(y+m_2x)+f_3(y+m_3x)

Now,

(P.I)1=x22D3+3D2D+4DD2+5D3=12D3(1+(3D2D+2(DD)2+52(DD)2))1(x2)=12D3(x2)=x5120(P.I)_1=\frac{x^2}{2D^3+3D^2D'+4DD'^2+5D'^3}\\ =\frac{1}{2D^3}\bigg(1+\bigg(\frac{3D'}{2D}+2\bigg(\frac{D'}{D}\bigg)^2+\frac{5}{2}\bigg(\frac{D'}{D}\bigg)^2\bigg)\bigg)^{-1}(x^2)\\ =\frac{1}{2D^3}(x^2)=\frac{x^5}{120}

Similarly,

(P.I)2=y2D3+3D2D+4DD2+5D3=15D3(1+(4D5D+35(DD)2+25(DD)2))1(y)=15D3(y)=y4120(P.I)_2=\frac{y}{2D^3+3D^2D'+4DD'^2+5D'^3}\\ =\frac{1}{5D'^3}\bigg(1+\bigg(\frac{4D}{5D'}+\frac{3}{5}\bigg(\frac{D}{D'}\bigg)^2+\frac{2}{5}\bigg(\frac{D}{D'}\bigg)^2\bigg)\bigg)^{-1}(y)\\ =\frac{1}{5D'^3}(y)=\frac{y^4}{120}

Thus, complete solution is

C.F+(P.I)1+(P.I)2C.F+(P.I)_1+(P.I)_2

which is

i=13fi(y+mix)+1120(x5+y4)\sum_{i=1}^{3}f_i(y+m_ix)+\frac{1}{120}(x^5+y^4)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS