(D2+2DD′+D′2)z=e(x+2y)+sinh(x+y)
The auxiliary equation is m2+2m+1=0
(m+1)2=0⇒m1=−1,m2=−1∴The complementary functionC.F=f1(y−x)+xf2(y−x)
Let, the particular integral be
P.I=P.I1+P.I2P.I1P.I1=D2+2DD′+D′21⋅e(x+2y)(D=1,D′=2)=91e(x+2y)
P.I2P.I2=D2+2DD′+D21⋅sinh(x+y)=D2+2DD′+D21[2e(x+y)−e−(x+y)]=21[D2+2DD′+D′21⋅e(x+y)−D2+2DD′+D′21⋅e−(x+y)]{D=1,D′=1}{D=−1,D′=−1}=21[4ex+y−4e−(x+y)]=81[e(x+y)−e−(x+y)]=41sinh(x+y)
The complete solution is,
z=f1(y−x)+xf2(y−x)+9ex+2y+41sinh(x+y)
Comments