Question #125616
solve(D^2+2DD'+D'^2)z = e^x+2y + sinh(x+y)
1
Expert's answer
2020-07-07T21:13:03-0400

(D2+2DD+D2)z=e(x+2y)+sinh(x+y)\left(D^{2}+2 D D^{\prime}+D^{\prime 2}\right) z=e^{(x+2 y)}+\sinh(x+y)


The auxiliary equation is m2+2m+1=0m^{2}+2m + 1 = 0

(m+1)2=0m1=1,m2=1The complementary functionC.F=f1(yx)+xf2(yx)\begin{array}{l} (m+1)^{2}=0 \\ \Rightarrow m_{1}=-1, m_{2}=-1 \\ \therefore \text{The complementary function}\\ C.F = f_{1}(y - x) + x f_{2}(y - x) \\ \end{array}


Let, the particular integral be


P.I=P.I1+P.I2P.I1=1D2+2DD+D2e(x+2y)(D=1,D=2)P.I1=19e(x+2y)P.I = P.I_{1}+P.I_{2}\\ \begin{aligned} P.I_{1}&=\frac{1}{D^{2}+2 DD'+D'^{2}} \cdot e^{(x+2 y)} \quad\left(D = 1, D' = 2\right)\\ P.I_{1}&=\frac{1}{9} e^{(x+2y)} \end{aligned}

P.I2=1D2+2DD+D2sinh(x+y)=1D2+2DD+D2[e(x+y)e(x+y)2]=12[1D2+2DD+D2e(x+y)1D2+2DD+D2e(x+y)]{D=1,D=1}{D=1,D=1}=12[ex+y4e(x+y)4]P.I2=18[e(x+y)e(x+y)]=14sinh(x+y)\begin{aligned} P.I_{2}&=\frac{1}{D^{2}+2 D D^{\prime}+D^{2}} \cdot \sinh (x+y) \\ &=\frac{1}{D^{2}+2 D D^{\prime}+D^{2}}\left[\frac{e^{(x+y)}-e^{-(x+y)}}{2}\right]\\ &=\frac{1}{2}\left[\frac{1}{D^{2}+2 D D^{\prime}+D^{\prime 2}} \cdot e^{(x+y)}-\frac{1}{D^{2}+2 D D^{\prime}+D^{\prime 2}} \cdot e^{-(x+y)}\right]\\ & \qquad\qquad \{D = 1, D' = 1\} \qquad\qquad\qquad \{D =-1, D'=-1\}\\ &=\frac{1}{2}\left[\frac{e^{x+y}}{4}-\frac{e^{-(x+y)}}{4}\right]\\ P.I_{2}&=\frac{1}{8}\left[e^{(x+y)}-e^{-(x+y)}\right]=\frac{1}{4} \sinh (x+y) \end{aligned}


The complete solution is,

z=f1(yx)+xf2(yx)+ex+2y9+14sinh(x+y)z=f_{1}(y-x)+x f_{2}(y-x)+\dfrac{e^{x+2 y}}{9}+\dfrac{1}{4} \sinh (x+y)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS