Question #125356
1. Find the solution of the initial value problem y′′+4y=t^2+6e^t, y(0)=0, y′(0)=5.
Enter an exact answer. Enclose arguments of functions in parentheses. For example, sin(2x).

y(t) = _____

2. Use the method of variation of parameters to find a particular solution of the differential equation

y′′−2y′−15y=384e^−t.

Y(t) = ______
1
Expert's answer
2020-07-08T18:22:36-0400

1.The given equation is, (D2+4)y=t2+6et(D^{2}+4)y = t^{2}+6e^{t} . The auxiliary equation is, m2+4=0.m^{2} + 4 = 0.

m2=4m=±2i\begin{array}{l} m^{2}=-4\\ \Rightarrow m = \pm 2i \end{array}

The complementary function is,

yc=c1cos(2t)+c2sin(2t)y_{c} = c_{1}\cos (2t)+c_{2}\sin(2t)


The particular integral is,

yp=1D2+4(t2+6et)=1D2+4t2+1D2+46et=14(1+D24)1t2+6et5(Using D=1 in 2nd term)=14(1D24+)t2+6et5=14(t212)+6et5=t24+6et518\begin{aligned} y_{p}&=\dfrac{1}{D^{2}+4}\left(t^{2}+6e^{t}\right)\\ &=\dfrac{1}{D^{2}+4} \cdot t^{2}+ \dfrac{1}{D^{2}+4} \cdot 6e^{t}\\ &=\dfrac{1}{4}\left(1+\frac{D^{2}}{4}\right)^{-1}\cdot t^{2} + \frac{6e^{t}}{5}\\ &\qquad \qquad \qquad\qquad (\text{Using}~ D=1~ \text{in $2^{nd}$ term} )\\ &=\dfrac{1}{4}\left(1-\frac{D^{2}}{4}+\cdots\right)\cdot t^{2} + \frac{6e^{t}}{5}\\ &=\dfrac{1}{4}\left(t^{2}-\frac{1}{2}\right) + \frac{6e^{t}}{5}\\ &=\dfrac{t^{2}}{4} + \frac{6e^{t}}{5} -\frac{1}{8} \end{aligned}


The general solution is,

y=c1cos(2t)+c2sin(2t)+t24+6et518y = c_{1}\cos(2t)+c_{2}\sin(2t)+\dfrac{t^{2}}{4}+\dfrac{6e^{t}}{5}-\dfrac{1}{8}


Then,

y=2c1sin(2t)+2c2cos(2t)+t2+6et5y'=-2c_{1}\sin(2t)+2c_{2}\cos(2t)+\dfrac{t}{2}+\dfrac{6e^{t}}{5}


Using the given initial conditions, y(0)=0,y(0)=5y(0)=0, y'(0)=5 we get


c1=4340,c2=1910c_{1} = -\dfrac{43}{40}, c_{2} = \dfrac{19}{10} .

Hence, the general solution is

y=1910sin(2t)4340cos(2t)+t24+6et518y=140(76sin(2t)43cos(2t)+10t2+48et5)\begin{aligned} y &= \dfrac{19}{10}\sin(2t)-\dfrac{43}{40}\cos(2t)+\dfrac{t^{2}}{4}+\dfrac{6e^{t}}{5}-\dfrac{1}{8}\\ y &= \dfrac{1}{40}\left(76\sin(2t)-43\cos(2t)+10t^{2}+48e^{t}-5\right) \end{aligned}


2.The given equation is, (D22D15)y=384et(D^{2}-2D-15)y = 384e^{-t} . The auxiliary equation is,

m22m15=0m^{2}-2m-15=0. Solving we get, m=5,3m = 5,-3. The complementary function is,

yc=c1e5t+c2e3t=c1f1+c2f2y_{c} = c_{1}e^{5t}+c_{2}e^{-3t} = c_{1}f_{1}+c_{2}f_{2}.

The particular solution is,

yp=Pf1+Qf2, where P=f2g(t)W(f1,f2)dt;Q=f1g(t)W(f1,f2)dt and g(t)=384et,W(f1,f2)=8e2t.y_{p} = Pf_{1}+Qf_{2},~\text{where} \\~\\ P = -\displaystyle\int \dfrac{f_{2}g(t)}{W(f_{1},f_{2})}dt; \quad Q = \displaystyle\int \dfrac{f_{1}g(t)}{W(f_{1},f_{2})}dt\\~\\ \text{and}~ g(t) = 384e^{-t}, W(f_{1},f_{2}) = -8e^{2t}.


P=f2g(t)W(f1,f2)dt=e3t384et8e2tdt=48e6tdt=8e6t\begin{aligned} P &= -\displaystyle\int \dfrac{f_{2}g(t)}{W(f_{1},f_{2})}dt\\ &= -\displaystyle\int \dfrac{e^{-3t}\cdot 384e^{-t}}{-8e^{2t}}dt\\ &= 48\displaystyle\int e^{-6t}dt = -8e^{-6t}\\ \end{aligned}

Q=f1g(t)W(f1,f2)dt=e5t384et8e2tdt=48e2tdt=24e2t\begin{aligned} Q &= \displaystyle\int \dfrac{f_{1}g(t)}{W(f_{1},f_{2})}dt\\ &= \displaystyle\int \dfrac{e^{5t}\cdot 384e^{-t}}{-8e^{2t}}dt\\ &= -48\displaystyle\int e^{2t}dt = -24e^{2t}\\ \end{aligned}

Thus,

yp=8e6te5t24e2te3t=32ety_{p} = -8e^{-6t} \cdot e^{5t} -24e^{2t} \cdot e^{-3t} = -32e^{-t}


The general solution is,

y=c1e5t+c2e3t32ety= c_{1}e^{5t}+c_{2}e^{-3t}-32e^{-t}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS