1.The given equation is, (D2+4)y=t2+6et . The auxiliary equation is, m2+4=0.
m2=−4⇒m=±2i
The complementary function is,
yc=c1cos(2t)+c2sin(2t)
The particular integral is,
yp=D2+41(t2+6et)=D2+41⋅t2+D2+41⋅6et=41(1+4D2)−1⋅t2+56et(Using D=1 in 2nd term)=41(1−4D2+⋯)⋅t2+56et=41(t2−21)+56et=4t2+56et−81
The general solution is,
y=c1cos(2t)+c2sin(2t)+4t2+56et−81
Then,
y′=−2c1sin(2t)+2c2cos(2t)+2t+56et
Using the given initial conditions, y(0)=0,y′(0)=5 we get
c1=−4043,c2=1019 .
Hence, the general solution is
yy=1019sin(2t)−4043cos(2t)+4t2+56et−81=401(76sin(2t)−43cos(2t)+10t2+48et−5)
2.The given equation is, (D2−2D−15)y=384e−t . The auxiliary equation is,
m2−2m−15=0. Solving we get, m=5,−3. The complementary function is,
yc=c1e5t+c2e−3t=c1f1+c2f2.
The particular solution is,
yp=Pf1+Qf2, where P=−∫W(f1,f2)f2g(t)dt;Q=∫W(f1,f2)f1g(t)dt and g(t)=384e−t,W(f1,f2)=−8e2t.
P=−∫W(f1,f2)f2g(t)dt=−∫−8e2te−3t⋅384e−tdt=48∫e−6tdt=−8e−6t
Q=∫W(f1,f2)f1g(t)dt=∫−8e2te5t⋅384e−tdt=−48∫e2tdt=−24e2t
Thus,
yp=−8e−6t⋅e5t−24e2t⋅e−3t=−32e−t
The general solution is,
y=c1e5t+c2e−3t−32e−t
Comments