Diffrential equation is
cos2(y)dx+(1+e−x)sin(y)dy=0 Now, divide the above equation by cos2(y)(1+e−x) ,thus
1+e−xdx+cos2(y)sin(y)dy=0⟹1+exexdx+cos2(y)sin(y)dy=0⟹∫1+exexdx+∫cos2(y)sin(y)dy=constant⟹ln(1+ex)−∫u21du=constant, where u=cos(y)⟹ln(1+ex)+cos(y)1=constant
Comments