Question #125594
cos^2ydx+(1+e^-x)sinydy=0
1
Expert's answer
2020-07-07T21:16:30-0400

Diffrential equation is

cos2(y)dx+(1+ex)sin(y)dy=0\cos^2(y)dx+(1+e^{-x})\sin(y)dy=0

Now, divide the above equation by cos2(y)(1+ex)\cos^2(y)(1+e^{-x}) ,thus

dx1+ex+sin(y)cos2(y)dy=0    ex1+exdx+sin(y)cos2(y)dy=0    ex1+exdx+sin(y)cos2(y)dy=constant    ln(1+ex)1u2du=constant, where u=cos(y)    ln(1+ex)+1cos(y)=constant\frac{dx}{1+e^{-x}}+\frac{\sin(y)}{\cos^2(y)}dy=0\\ \implies \frac{e^x}{1+e^x}dx+\frac{\sin(y)}{\cos^2(y)}dy=0\\ \implies \int\frac{e^x}{1+e^x}dx+\int\frac{\sin(y)}{\cos^2(y)}dy=\text{constant}\\ \implies \ln(1+e^x)-\int\frac{1}{u^2}du=\text{constant, where $u=\cos(y)$}\\ \implies \textcolor{blue}{\ln(1+e^x)+\frac{1}{\cos(y)}}=\text{\textcolor{blue}{constant}}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS