Assume y2(t)=v(t)y1(t), then
y2′(t)=v′(t)y1(t)+v(t)y1′(t)=v′(t)t+v(t)
y2′′(t)=v′′(t)t+v′(t)+v′(t)=v′′(t)t+2v′(t) Plugging these into the differential equation gives
t2(v′′t+2v′)+10t(v′t+v)−10vt=0
t3v′′+2t2v′+10t2v′+10tv−10vt=0 Since t>0
tv′′+12v′=0 Let v′=u, we have
tu′+12u=0 By separation of variables
uu′=−t12
u=C1t−12 Thus
v′=C1t−12
v=−111C1t−11+C2
v=C3t−11+C2
y2=C3t−10+C2t Now we take C3=1,C2=0
y2=t−10
D. y2=t−10
Comments