Question #125349

1. Find the Wronskian of the functions f(t)= (3e^t)sin t and g(t)= (e^t) cos t. Simplify your answer.

W(f,g)(t)= ________


2. Solve the initial value problem y′′+4y′+4y=0, y(−1)=4, y′(−1)=4.


1
Expert's answer
2020-07-09T19:50:12-0400


1).W(f,g)(t)=3etsin(t)etcos(t)(3etsin(t))(etcos(t))=3etsin(t)etcos(t)32etsin(t+π/4)2etcos(t+π/4)W(f,g)(t)=\begin{vmatrix} 3e^t\sin(t) & e^t\cos(t) \\ (3e^t\sin(t))' & (e^t\cos(t))' \end{vmatrix}=\begin{vmatrix} 3e^t\sin(t) & e^t\cos(t) \\ 3\sqrt{2}e^t\sin(t+\pi/4) & \sqrt{2}e^t\cos(t+\pi/4) \end{vmatrix}

Thus,

W(f,g)(t)=3e2tW(f,g)(t)=-3e^{2t}


2).Given

y′′+4y+4y=0,y(1)=4,y(1)=4.y′′+4y′+4y=0, y(−1)=4, y′(−1)=4.

Now, Auxiliary equation will be

p2+4p+4=0    (p+2)2=0    p=2p^2+4p+4=0\implies (p+2)^2=0\implies p=-2

Thus, general solution will be

y=(a+bx)e2xy=(a+bx)e^{-2x}

Now,

y=2(a+bx)e2x+be2xy'=-2(a+bx)e^{-2x}+be^{-2x}

From, initial conditions we get,

y(1)=(ab)e2=4y(1)=2(ab)e2+be2=4    b=12e2,a=16e2y(-1)=(a-b)e^2=4\\y'(-1)=-2(a-b)e^2+be^2=4\\ \implies b=12e^{-2},a=16e^{-2}

Hence, the solution wil be

y=(16+12x)e2(x+1)y=(16+12x)e^{-2(x+1)}


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS