1).W ( f , g ) ( t ) = ∣ 3 e t sin ( t ) e t cos ( t ) ( 3 e t sin ( t ) ) ′ ( e t cos ( t ) ) ′ ∣ = ∣ 3 e t sin ( t ) e t cos ( t ) 3 2 e t sin ( t + π / 4 ) 2 e t cos ( t + π / 4 ) ∣ W(f,g)(t)=\begin{vmatrix}
3e^t\sin(t) & e^t\cos(t) \\
(3e^t\sin(t))' & (e^t\cos(t))'
\end{vmatrix}=\begin{vmatrix}
3e^t\sin(t) & e^t\cos(t) \\
3\sqrt{2}e^t\sin(t+\pi/4) & \sqrt{2}e^t\cos(t+\pi/4)
\end{vmatrix} W ( f , g ) ( t ) = ∣ ∣ 3 e t sin ( t ) ( 3 e t sin ( t ) ) ′ e t cos ( t ) ( e t cos ( t ) ) ′ ∣ ∣ = ∣ ∣ 3 e t sin ( t ) 3 2 e t sin ( t + π /4 ) e t cos ( t ) 2 e t cos ( t + π /4 ) ∣ ∣
Thus,
W ( f , g ) ( t ) = − 3 e 2 t W(f,g)(t)=-3e^{2t} W ( f , g ) ( t ) = − 3 e 2 t
2).Given
y ′′ + 4 y ′ + 4 y = 0 , y ( − 1 ) = 4 , y ′ ( − 1 ) = 4. y′′+4y′+4y=0, y(−1)=4, y′(−1)=4. y ′′ + 4 y ′ + 4 y = 0 , y ( − 1 ) = 4 , y ′ ( − 1 ) = 4. Now, Auxiliary equation will be
p 2 + 4 p + 4 = 0 ⟹ ( p + 2 ) 2 = 0 ⟹ p = − 2 p^2+4p+4=0\implies (p+2)^2=0\implies p=-2 p 2 + 4 p + 4 = 0 ⟹ ( p + 2 ) 2 = 0 ⟹ p = − 2 Thus, general solution will be
y = ( a + b x ) e − 2 x y=(a+bx)e^{-2x} y = ( a + b x ) e − 2 x Now,
y ′ = − 2 ( a + b x ) e − 2 x + b e − 2 x y'=-2(a+bx)e^{-2x}+be^{-2x} y ′ = − 2 ( a + b x ) e − 2 x + b e − 2 x From, initial conditions we get,
y ( − 1 ) = ( a − b ) e 2 = 4 y ′ ( − 1 ) = − 2 ( a − b ) e 2 + b e 2 = 4 ⟹ b = 12 e − 2 , a = 16 e − 2 y(-1)=(a-b)e^2=4\\y'(-1)=-2(a-b)e^2+be^2=4\\
\implies b=12e^{-2},a=16e^{-2} y ( − 1 ) = ( a − b ) e 2 = 4 y ′ ( − 1 ) = − 2 ( a − b ) e 2 + b e 2 = 4 ⟹ b = 12 e − 2 , a = 16 e − 2 Hence, the solution wil be
y = ( 16 + 12 x ) e − 2 ( x + 1 ) y=(16+12x)e^{-2(x+1)} y = ( 16 + 12 x ) e − 2 ( x + 1 )
Comments