1. Find the Wronskian of the functions f(t)= (3e^t)sin t and g(t)= (e^t) cos t. Simplify your answer.
W(f,g)(t)= ________
2. Solve the initial value problem y′′+4y′+4y=0, y(−1)=4, y′(−1)=4.
1)."W(f,g)(t)=\\begin{vmatrix}\n 3e^t\\sin(t) & e^t\\cos(t) \\\\\n (3e^t\\sin(t))' & (e^t\\cos(t))'\n\\end{vmatrix}=\\begin{vmatrix}\n 3e^t\\sin(t) & e^t\\cos(t) \\\\\n 3\\sqrt{2}e^t\\sin(t+\\pi\/4) & \\sqrt{2}e^t\\cos(t+\\pi\/4)\n\\end{vmatrix}"
Thus,
"W(f,g)(t)=-3e^{2t}"
2).Given
"y\u2032\u2032+4y\u2032+4y=0, y(\u22121)=4, y\u2032(\u22121)=4."Now, Auxiliary equation will be
"p^2+4p+4=0\\implies (p+2)^2=0\\implies p=-2"Thus, general solution will be
"y=(a+bx)e^{-2x}"Now,
"y'=-2(a+bx)e^{-2x}+be^{-2x}"From, initial conditions we get,
"y(-1)=(a-b)e^2=4\\\\y'(-1)=-2(a-b)e^2+be^2=4\\\\\n\\implies b=12e^{-2},a=16e^{-2}"Hence, the solution wil be
"y=(16+12x)e^{-2(x+1)}"
Comments
Leave a comment