1).W(f,g)(t)=∣∣3etsin(t)(3etsin(t))′etcos(t)(etcos(t))′∣∣=∣∣3etsin(t)32etsin(t+π/4)etcos(t)2etcos(t+π/4)∣∣
Thus,
W(f,g)(t)=−3e2t
2).Given
y′′+4y′+4y=0,y(−1)=4,y′(−1)=4. Now, Auxiliary equation will be
p2+4p+4=0⟹(p+2)2=0⟹p=−2 Thus, general solution will be
y=(a+bx)e−2x Now,
y′=−2(a+bx)e−2x+be−2x From, initial conditions we get,
y(−1)=(a−b)e2=4y′(−1)=−2(a−b)e2+be2=4⟹b=12e−2,a=16e−2 Hence, the solution wil be
y=(16+12x)e−2(x+1)
Comments