Given ( x + y ) ( p + q ) = z − 1 (x+y)(p+q) =z-1 ( x + y ) ( p + q ) = z − 1
⟹ ( x + y ) p + ( x + y ) q = z − 1 \implies (x+y)p + (x+y)q = z-1 ⟹ ( x + y ) p + ( x + y ) q = z − 1
So, Lagrange's equation is
d x x + y = d y x + y = d z z − 1 \frac{dx}{x+y} = \frac{dy}{x+y} = \frac{dz}{z-1} x + y d x = x + y d y = z − 1 d z .
By First two factors of Lagrange's equation
d x x + y = d y x + y ⟹ d x = d y ⟹ x − y = c 1 \frac{dx}{x+y} = \frac{dy}{x+y}
\\
\implies dx = dy \\
\implies x - y =c_1 x + y d x = x + y d y ⟹ d x = d y ⟹ x − y = c 1 ______________(1)
By last two factors, we get
d y x + y = d z z − 1 \frac{dy}{x+y} = \frac{dz}{z-1} x + y d y = z − 1 d z
Now, by using solution (1), we get
d y c 1 + 2 y = d z z − 1 \frac{dy}{c_1+2y} = \frac{dz}{z-1} c 1 + 2 y d y = z − 1 d z
By integrating, we get
1 2 log ( c 1 + 2 y ) = log ( z − 1 ) + c 2 \frac{1}{2}\log(c_1+2y) = \log(z-1)+c_2 2 1 log ( c 1 + 2 y ) = log ( z − 1 ) + c 2
⟹ 1 2 log ( x + y ) = log ( z − 1 ) + c 2 \implies \frac{1}{2}\log(x+y) = \log(z-1)+c_2 ⟹ 2 1 log ( x + y ) = log ( z − 1 ) + c 2
⟹ 0 = log ( z − 1 x + y ) + c 2 \implies 0 = \log(\frac{z-1}{\sqrt{x+y}})+c_2 ⟹ 0 = log ( x + y z − 1 ) + c 2
⟹ z − 1 x + y = e − c 2 = c 3 \implies \frac{z-1}{\sqrt{x+y}} = e^{-c_2} = c_3 ⟹ x + y z − 1 = e − c 2 = c 3 ____________(2)
Hence, Solution is c 3 = f ( c 1 ) c_3 = f(c_1) c 3 = f ( c 1 )
⟹ z − 1 = ( x + y ) f ( x − y ) \implies z-1 = (\sqrt{x+y}) \ f(x-y) ⟹ z − 1 = ( x + y ) f ( x − y )
Comments