According to Newton's second law
Let "y" denote the height of the particle above the ground.
Let "v(t)" denote the velocity of the particle at time "t"
"{mv_0^2\\over 2}+0={mv^2\\over 2}+mgy"
"m{dv\\over dt}=-mg"
(i) maximum height reached.
"{mv_0^2\\over 2}+0=0+mgy_{max}"
"y_{max}={v_0^2\\over 2g}"
"y_{max}={(15m\/s)^2 \\over2(9.8m\/s^2)}\\approx11.480\\ m"
(ii) Let "t_2=" time taken for it to return to "0."
When the partice reaches maximum height
"t_1={v_0\\over g}"
"t_2=2t_1={2v_0\\over g}"
"t_2={2(15m\/s)\\over 9.8m\/s^2}\\approx3.061\\ s"
(iii) time taken for it to be 25 m below O.
"y(0)=0, v(t)=v_0-gt"
"y=\\int v(t)dt=\\int(v_0-gt)dt=y(0)+v_0t-{gt^2\\over 2}=""=v_0t-{gt^2\\over 2}"
Given "y=-25\\ m"
"4.9t_3^2-15t_3-25=0"
"t_3={15\\pm\\sqrt{(-15)^2-4(4.9)(25)}\\over 2(4.9)}="
"={15\\pm\\sqrt{715}\\over 9.8}"
Since "t_3\\geq0," we take
The particle will be 25 m below approximately "4.259" seconds after start.
Comments
Leave a comment