Question #124021
1. (a) Find the solution of the initial-value problem and determine its interval of existence (i.e domain of the resulting function y).
(i)dy =1+t2, y(t=1)=0. dt t
(ii)(t+1)dy =1−y, y(t=0)=3. [Hint: LetA=−(±e−C).] dt
1
Expert's answer
2020-06-26T16:55:37-0400

(i) dydt=1+t2 y(t)=(t2+1)dty(t)=13t3+t+C1.\frac{dy}{dt}=1+t^2\to\ y(t)=\int(t^2+1)dt\to y(t)=\frac{1}{3}t^3+t+C_1.

We take into account the initial conditions: y(1)=0C1+43=0C1=43.y(1)=0\to C_1 +\frac{4}{3}=0\to C_1=-\frac{4}{3}.

Substitute C1=43C_1 =-\frac{4}{3} into y(t)=t33+t+C1.Answer:y(t)=13(t3+3t4).y(t)=\frac{t^3}{3}+t+C_1. Answer: y(t)=\frac{1}{3}(t^3+3t-4).

(ii)

(t+1)dydt=1y(dy1y)=(dtt+1)log(y1)=log(t+1)+C1y(t)=C2t+1+1;y(0)=3C2+1=3C2=2.Answer:y(t)=t+3t+1.(i)yR;(ii)y(,1)(1,+)(t+1)\frac{dy}{dt}=1-y\to\int(\frac{dy}{1-y})=\int(\frac{dt}{t+1})\to -\log(y-1)=\log(t+1)+C_1\to \\ y(t)=\frac{C_2}{t+1}+1; \, y(0)=3\to C_2 +1=3\to C_2 =2. \\Answer:y(t)=\frac{t+3}{t+1}. (i) y\in R; (ii) y\in(-\infty,1)\bigcup(1,+\infty)


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS