(i) dtdy=1+t2→ y(t)=∫(t2+1)dt→y(t)=31t3+t+C1.
We take into account the initial conditions: y(1)=0→C1+34=0→C1=−34.
Substitute C1=−34 into y(t)=3t3+t+C1.Answer:y(t)=31(t3+3t−4).
(ii)
(t+1)dtdy=1−y→∫(1−ydy)=∫(t+1dt)→−log(y−1)=log(t+1)+C1→y(t)=t+1C2+1;y(0)=3→C2+1=3→C2=2.Answer:y(t)=t+1t+3.(i)y∈R;(ii)y∈(−∞,1)⋃(1,+∞)
Comments