Question #122708
Express sin inverse x in the form of a power series summation an x^n by solving y'= (1-x^2) ^(1/2) in two ways use this result to obtain the formula pi/6=1/2+ 1/2 .1/(3.(2)^3)+1/2.3/4.1/5.(2)^5)+ etc ......
1
Expert's answer
2020-06-17T18:51:03-0400

y=1x2y'=\sqrt{1-x^2}

y=1x2dxy=\int\sqrt{1-x^2}dx

x=sinu,u=arcsinx,dx=cosudux=sinu, u=arcsinx,dx=cosudu

y=cos2udu=cos2u+12du=cosusinu+u2y=\int cos^2udu=\int \frac {cos2u+1}{2}du=\frac {cosusinu+u}{2}

y=arcsinx+x1x22+Cy=\frac {arcsinx+x\sqrt{1-x^2}}{2}+C


y=n=0anxny=\sum^{\infin}_{n=0} a_nx^n

y=n=1nanxn1=1x2y'=\sum^{\infin}_{n=1} na_nx^{n-1}=\sqrt{1-x^2}

c+2n=0anxn=arcsinx+xn=1nanxn1c+2\sum^{\infin}_{n=0} a_nx^n=arcsinx+x\sum^{\infin}_{n=1} na_nx^{n-1}

c+2n=0anxn=arcsinx+n=1nanxnc+2\sum^{\infin}_{n=0} a_nx^n=arcsinx+\sum^{\infin}_{n=1} na_nx^n

arcsinx=c+2n=0anxnn=1nanxnarcsinx=c+2\sum^{\infin}_{n=0} a_nx^n-\sum^{\infin}_{n=1} na_nx^n

arcsinx=c+2a0+n=1(2n)anxnarcsinx=c+2a_0+\sum^{\infin}_{n=1}(2-n)a_nx^n

arcsin0=0    c+2a0=0arcsin0=0\implies c+2a_0=0

Answer:

arcsinx=n=1(2n)anxnarcsinx=\sum^{\infin}_{n=1}(2-n)a_nx^n


(arcsinx)=n=1n(2n)anxn1=11x2(arcsinx)'=\sum ^{\infin}_{n=1}n(2-n)a_nx^{n-1}=\frac {1}{\sqrt{1-x^2}}

(arcsin0)=1=a1(arcsin0)'=1=a_1

(arcsin0)=1    a3=1/6(arcsin0)'''=1\implies a_3=-1/6

By same way we can get a4,a5,...a_4,a_5,...

So:

π6=arcsin(1/2)=12+16123+...\frac {\pi}{6}=arcsin(1/2)=\frac {1}{2}+\frac {1}{6}\cdot\frac {1}{2^3}+...


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS