Question #122611
Consider how the methods of undetermined coefficients and variation of parameters can be combined to solve the given differential equation. Carry out your ideas to solve the differential equation.

y'' − 2y' + y = 4x^2 − 1 + x^−1e^x

y(x) =____
1
Expert's answer
2020-07-07T20:35:20-0400

Given differential equation is y2y+y=4x21+exxy'' -2y' +y = 4x^2 - 1 + \frac{e^x}{x}

Auxiliary equation is m22m+1=0    m=1,1m^2 - 2m + 1 = 0 \implies m =1,1

so y=C1ex+C2xexy = C_1e^x+C_2xe^x


Let us solve for (4x21)4x^2-1) by undetermined coefficients and for exx\frac{e^x}{x} by variation of parameters


(a) undetermined coefficients:

let y=Ax2+Bx+Cy = Ax^2 +Bx+C be solution of the equation y2y+y=4x21y'' -2y' +y = 4x^2 - 1

then differentiating y first and second time with respect to x, and putting in differential equation, then equation will be ,

2A4Ax2B+Ax2+Bx+C=4x21    A=4,B=16,C=232A-4Ax-2B+Ax^2 +Bx+C = 4x^2-1 \implies A = 4, B=16, C=23

then y=C1ex+C2xex+4x2+16x+23y = C_1e^x+C_2xe^x+ 4x^2 +16x+23


(b) method of variation of parameters

Differential equation is y2y+y=exxy'' -2y' +y = \frac{e^x}{x}

since y=C1ex+C2xexy = C_1e^x+C_2xe^x for auxiliary equation

Here u=ex,v=xex,R=exxu = e^x, v=xe^x, R =\frac{e^x}{x}

Then W, Wronskian of u and v will be


W=exxexexex(x+1)=e2xW = \begin{vmatrix} e^x & xe^x \\ e^x & e^x(x+1) \end{vmatrix} = e^{2x}


then P.I.=uvRWdx+vuRWdxP.I. = -u\int\frac{vR}{W}dx + v\int\frac{uR}{W}dx


P.I.=exxexexxe2xdx+xexe2xxe2xdxP.I. = e^x\int\frac{xe^xe^x}{xe^{2x}}dx + xe^x\int\frac{e^{2x}}{xe^{2x}}dx


P.I.=exdx+xexdxx=xex(ln(x)1)P.I. = -e^x\int dx + xe^x\int \frac{dx}{x} = xe^x(ln(x) - 1)



Hence, final solution of the equation will be


y=C1ex+C2xex+4x2+16x+23+xex(ln(x)1)y = C_1e^x+C_2xe^x+ 4x^2 +16x+23 + xe^x(ln(x)-1)



Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS