Solution:
y'' − 25y = 2;
y1 = e-5xÂ
y'' − 25y =0
y2(x)=u(x)y1(x)
y=ue-5x
y'=u'e-5x-5ue-5x
y''=u''e-5x-10u'e-5x+25ue-5x
y'' − 25y=u''e-5x-10u'e-5x+25ue-5x-25ue-5x=0
u''e-5x-10u'e-5x=0 | e5x
u''-10u'=0
t=u'
t'-10t=0
dt/dx=10t
dt/t=10dx,
ln|t|=10x+C1
t=Ce10x
Let C=1.
y=e10xe-5x=e5x
y2(x)=e5x
yp(x)=A
A''=0
-25A=2=>A=-2/25
yp(x)=-2/25
Answer:
y2(x)=e5x
yp(x)=-2/25
Comments
Leave a comment