Question #122590
1. Find a linear differential operator that annihilates the given function. (Use D for the differential operator.)

e−x + 5xex − x2ex

2. Find a linear differential operator that annihilates the given function. (Use D for the differential operator.)

cos 6x
1
Expert's answer
2020-06-29T18:43:08-0400

 1)A linear differential operator g(D) is called annihilates the function f(x) iff g(f(x))=0g(f(x)) = 0 where D=ddxD = \frac{d}{dx} .

Given f(x)=ex+5xexx2exf(x)=e^{−x} + 5xe^x − x^2e^x _____________(1)

We known (DA)n(D-A)^n annihilatesC1eAx+C2xeAx+C3x2eAx++Cn1xn1eAxC_1e^{Ax}+C_2xe^{Ax}+C_3x^2e^{Ax}+ …+ C_{n-1}x^{n-1}e^{Ax} .

Hence, (D+1)(D+1) annihilates exe^{-x} and (D1)3(D-1)^3 annihilates 5xexx2ex5xe^x-x^2e^x .

Hence, (D+1)(D1)3(D+1)(D-1)^3 annihilates f(x)f(x) .


2) Givenf(x)=cos(6x)f(x) = cos(6x) .

    Df=6sin(6x)    D2f=36cos(6x)    (D2+36)f(x)=0\implies Df = -6sin(6x) \implies D^2f = -36 cos(6x) \\ \implies (D^2+36)f(x) = 0

Thus, (D2+36)(D^2+36) annihilates cos(6x)cos(6x) .


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS