Question #122586
1. Find a homogeneous linear differential equation with constant coefficients whose general solution is given.

y = c1 cos 2x + c2 sin 2x

A. y'' + 2y = 0
B. y'' − 2y = 0
C. y'' + 4y = 0
D. y'' − 4y = 0
E. y'' − 4y' + 4y = 0
1
Expert's answer
2020-06-25T18:46:24-0400

y=2c1sin2x+2c2cos2xy'=-2c_1sin2x+2c_2cos2x

y=4c1cos2x4c2sin2xy''=-4c_1cos2x-4c_2sin2x

Then:

y+4y=4c1cos2x4c2sin2x+4c1cos2x+4c2sin2x=0y'' + 4y =-4c_1cos2x-4c_2sin2x+ 4c_1 cos 2x +4 c_2 sin 2x=0


Answer: C. y+4y=0y'' + 4y = 0


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS