Question #122583
1. Find the general solution of the given second-order differential equation.
3y'' + y' = 0

y(x) = _____

2. Solve the given initial-value problem.
y''' + 14y'' + 49y' = 0, y(0) = 0, y'(0) = 1, y''(0) = −8

y(x) =____
1
Expert's answer
2020-06-28T17:07:56-0400

3y+y=0A second order linear homogeneous The geveral solution isy(x)=yh3y+y=03r2+r=0r(3r+1)=0r=0,r=13y(x)=c1e0+c2e13x(1)    y(x)=c1+c2e13xy+14y+49y=0 Alinear homogeneous solution  The general solution y(x)=yhr3+14r2+49r=0r(r2+14r+49)=0r(r+7)2=0r=0,r=7,r=7y(x)=c1e0+c2e7x+c3xe7xy(x)=c1+c2e7x+c3xe7xy(0)=0c1+c2=0    (1)y(x)=7c2e7x+c3(7xe7x+e7x)y(0)=11=7c2+c3(0+1)72+c3=1    (2)y(x)=49c2e7x+c3(49xe7x7e7x7e7x)y(x)=49c2e7x+c3(49xe7x14e7x)y(0)=88=49c2+14C3    (3) SoLv (1),(2),(3)c1=649,c2=649,c3=17y(x)=649649e7x+17xe7xy(x)=149e7x(6e7x+7x6)3 y^{{\prime}{\prime}}+y^{\prime}=0 \\[1 em] \text{A second order linear homogeneous } \\[1 em] \text{The geveral solution is} \\[1 em] \begin{array}{l} y(x)=y_{h} \\[1 em] 3 y^{{\prime}{\prime}}+y^{\prime}=0 \rightarrow 3r^{2}+r=0 \\[1 em] \therefore r(3 r+1)=0 \rightarrow r=0, r=-\frac{1}{3} \\[1 em] \therefore y(x)=c_{1} e^{0}+c_{2} e^{-\frac{1}{3} x} \\[1 em] (1) \implies y(x)=c_{1}+c_{2} e^{-\frac{1}{3} x} \\[1 em] \end{array}\\[1 em] y^{\prime \prime \prime}+14 y^{\prime \prime}+49 y^{\prime}=0 \\[1 em] \text { Alinear homogeneous solution }\\[1 em] \text { The general solution }\\[1 em] y(x)=y_{h} \\[1 em] r^{3}+14 r^{2}+49 r=0\\[1 em] \therefore r\left(r^{2}+14 r+49\right)=0 \\[1 em] \therefore r(r+7)^{2}=0 \quad \Rightarrow r=0, r=-7, r=-7 \\[1 em] \therefore y(x)=c_{1} e^{0}+c_{2} e^{-7 x}+c_{3} x e^{-7 x} \\[1 em] y(x)=c_{1}+c_{2} e^{-7 x}+c_{3} x e^{-7 x} \\[1 em] y(0)=0 \quad \longrightarrow \quad c_{1}+c_{2}=0~~~~(1) \\[1 em] y^{\prime}(x)=-7 c_{2} e^{-7 x}+c_{3}\left(-7 x e^{-7 x}+e^{-7 x}\right) \\[1 em] y^{\prime}(0)=1 \\[1 em] \therefore \quad 1=-7 c_{2}+c_{3}(0+1) \rightarrow-7_{2}+c_{3}=1 ~~~~(2) \\[1 em] y^{\prime \prime}(x)=49 c_{2} e^{-7 x}+c_{3} \left(49 x e^{-7 x}-7 e^{-7 x}-7 e^{-7 x}\right) \\[1 em] y^{\prime \prime}(x)=49 c_{2} e^{-7 x}+c_{3}\left(49 x e^{-7 x}-14 e^{-7 x}\right) \\[1 em] y^{\prime \prime}(0)=-8 \\[1 em] \therefore \quad-8=49 c_{2}+14 C_{3}~~~~(3) \\[1 em] \text { SoLv } (1),(2),(3) \\[1 em] \therefore c_{1}=\frac{6}{49}, c_{2}=-\frac{6}{49}, c_{3}=\frac{1}{7} \\[1 em] y(x)=\frac{6}{49}-\frac{6}{49} e^{-7 x}+\frac{1}{7} x e^{-7 x} \\[1 em] y(x)=\frac{1}{49} e^{-7 x}\left(6 e^{7 x}+7 x-6\right)

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS