Question #122587
1. Solve the given boundary-value problem.
y'' − 16y' + 64y = 0, y(0) = 1, y(1) = 0

y(x) = _____
1
Expert's answer
2020-07-01T18:48:12-0400

......y16y+64y=0r216r+64=0(r8)2=0r1=r2=8y=yh=(c1x+c2)e8xy(1)=00=(c1+c2)e8c1+c2=0y(0)=11=c2c1=1,c2=1y=(1x)e8xy^{\prime \prime}-16 y^{\prime}+64 y=0 \\[1 em] r^{2}-16 r+64=0 \longrightarrow(r-8)^{2}=0 \\[1 em] \therefore r_{1}=r_{2}=8 \\[1 em] \therefore y=y_{h}=\left(c_{1} x+c_{2}\right) e^{8 x} \\[1 em] y(1)=0 \quad \rightarrow 0=\left(c_{1}+c_{2}\right) e^{8} \\[1 em] \therefore c_{1}+c_{2}=0 \\[1 em] y(0)=1 \longrightarrow 1=c_{2} \\[1 em] \therefore c_{1}=-1 \quad, c_{2}=1 \\[1 em] \therefore y=(1-x) e^{8 x}

Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS