Question #122595
1. Solve the given differential equation by undetermined coefficients.
y'' + 6y' + 9y = −xe^4x

y(x) =____

2. Solve the given differential equation by undetermined coefficients.
y''' − 3y'' + 3y' − y = e^x − x + 21

y(x)= _____
1
Expert's answer
2020-07-09T20:08:21-0400

1.The given equation can be written as, (D2+6D+9)y=xe4x.(D^{2}+6D+9)y = -xe^{4x}. The auxiliary equation is,

m2+6m+9=0.m^2+6m+9=0. Solving we get, m=3(twice)m=-3(twice). The complementary function is,

yc=(c1+c2x)e3xy_{c} = (c_{1}+c_{2}x)e^{-3x} . Let yp=(Ax+B)e4xy_{p} = (Ax+B)e^{4x} be the trial particular solution.

Then, ypy_{p} satisfies the given differential equation. Therefore, yp+6yp+9yp=xe4xy''_{p}+6y'_{p}+9y_{p} = -xe^{4x} .

Now,

yp=e4xA+(Ax+B)e4x4=e4x(4Ax+A+4B)yp=e4x4A+(4Ax+A+4B)e4x4=e4x(16Ax+8A+16B)\begin{aligned} y'_{p} &= e^{4x} \cdot A+ (Ax+B)\cdot e^{4x} \cdot 4\\ &= e^{4x}(4Ax+A+4B)\\ y''_{p}&= e^{4x} \cdot 4A + (4Ax+A+4B)\cdot e^{4x}\cdot 4\\ &= e^{4x}(16Ax+8A+16B) \end{aligned}

Hence,

e4x(16Ax+8A+16B+6(4Ax+A+4B)+9(Ax+B))=xe4x49Ax+14A+49B=x\begin{aligned} e^{4x}\bigg(16Ax+8A+16B+6\cdot(4Ax+A+4B)+9 \cdot (Ax+B)\bigg) &= -xe^{4x}\\ 49Ax+14A+49B &= -x\\ \end{aligned}

Comparing the coefficients and constant terms and solving we get,

A=149,B=2343A = -\dfrac{1}{49}, B = \dfrac{2}{343} . Therefore, yp=(x49+2343)e4x=e4x49(x27)y_{p} = \left(-\dfrac{x}{49}+\dfrac{2}{343}\right)e^{4x} = -\dfrac{e^{4x}}{49}\left(x-\dfrac{2}{7}\right) .

The general solution is,

y=(c1+c2x)e3xe4x49(x27)y = (c_{1}+c_{2}x)e^{-3x} - \dfrac{e^{4x}}{49}\left(x-\dfrac{2}{7}\right)


2.The given equation can be written as, (D33D2+3D1)y=exx+21(D^{3}-3D^{2}+3D-1)y=e^{x}-x+21. The auxiliary equation is m33m2+3m1=0.m^{3}-3m^{2}+3m-1=0. Solving we get, m=1(thrice).m = 1 (thrice). The complementary function is, yc=(c1+c2x+c3x2)ex.y_{c} = (c_{1}+c_{2}x+c_{3}x^{2})e^{x}. Since the complementary function is a linear combination of the term exe^{x}, we choose the trial solution as yp=Ax3ex+Bx+C.y_{p} = Ax^{3}e^{x} + Bx + C.

Thus,

yp=A(x3ex+3x2ex)+B=Aex(x3+3x2)+Byp=A(ex(3x2+6x)+ex(x3+3x2))=Aex(x3+6x2+6x)yp=A(ex(3x2+12x+6)+ex(x3+6x2+6x))=Aex(x3+9x2+18x+6)\begin{aligned} y'_{p} &= A(x^{3}e^{x}+3x^{2}e^{x})+B = Ae^{x}(x^{3}+3x^{2})+B\\ y''_{p} &= A\left(e^{x}(3x^{2}+6x)+e^{x}(x^{3}+3x^{2})\right)\\ &= Ae^{x}\left(x^{3}+6x^{2}+6x\right)\\ y'''_{p} &= A\left(e^{x}(3x^{2}+12x+6)+e^{x}(x^{3}+6x^{2}+6x)\right)\\ &=Ae^{x}(x^{3}+9x^{2}+18x+6) \end{aligned}

Using this in the given differential equation we get,

ex(Ax3+9Ax2+18Ax+6A3(Ax3+6Ax2+6Ax)+3(Ax3+3Ax2)Ax3)+3BBxC=exx+216AexBx+(3BC)=exx+21\begin{aligned} e^{x}\bigg(Ax^{3}+9Ax^{2}+18Ax+6A\\ -3\cdot(Ax^{3}+6Ax^{2}+6Ax) \\ +3\cdot(Ax^{3}+3Ax^{2})-Ax^{3}\bigg) \\ +3B - Bx - C &= e^{x}-x+21\\ 6Ae^{x}-Bx+(3B-C)&=e^{x}-x+21 \end{aligned}

Comparing the coefficients, constant terms and solving we get,

A=16,B=1,C=18.A=\dfrac{1}{6}, B = 1, C = 18.


Hence, yp=x3ex6+x18.y_{p}= \dfrac{x^{3}e^{x}}{6}+x-18.

The general solution is,

y=(c1+c2x+c3x2)ex+x3ex6+x18.y=(c_{1}+c_{2}x+c_{3}x^{2})e^{x}+\dfrac{x^{3}e^{x}}{6}+x-18.


Need a fast expert's response?

Submit order

and get a quick answer at the best price

for any assignment or question with DETAILED EXPLANATIONS!

Comments

No comments. Be the first!
LATEST TUTORIALS
APPROVED BY CLIENTS