1.The given equation can be written as, (D2+6D+9)y=−xe4x. The auxiliary equation is,
m2+6m+9=0. Solving we get, m=−3(twice). The complementary function is,
yc=(c1+c2x)e−3x . Let yp=(Ax+B)e4x be the trial particular solution.
Then, yp satisfies the given differential equation. Therefore, yp′′+6yp′+9yp=−xe4x .
Now,
yp′yp′′=e4x⋅A+(Ax+B)⋅e4x⋅4=e4x(4Ax+A+4B)=e4x⋅4A+(4Ax+A+4B)⋅e4x⋅4=e4x(16Ax+8A+16B)
Hence,
e4x(16Ax+8A+16B+6⋅(4Ax+A+4B)+9⋅(Ax+B))49Ax+14A+49B=−xe4x=−x
Comparing the coefficients and constant terms and solving we get,
A=−491,B=3432 . Therefore, yp=(−49x+3432)e4x=−49e4x(x−72) .
The general solution is,
y=(c1+c2x)e−3x−49e4x(x−72)
2.The given equation can be written as, (D3−3D2+3D−1)y=ex−x+21. The auxiliary equation is m3−3m2+3m−1=0. Solving we get, m=1(thrice). The complementary function is, yc=(c1+c2x+c3x2)ex. Since the complementary function is a linear combination of the term ex, we choose the trial solution as yp=Ax3ex+Bx+C.
Thus,
yp′yp′′yp′′′=A(x3ex+3x2ex)+B=Aex(x3+3x2)+B=A(ex(3x2+6x)+ex(x3+3x2))=Aex(x3+6x2+6x)=A(ex(3x2+12x+6)+ex(x3+6x2+6x))=Aex(x3+9x2+18x+6)
Using this in the given differential equation we get,
ex(Ax3+9Ax2+18Ax+6A−3⋅(Ax3+6Ax2+6Ax)+3⋅(Ax3+3Ax2)−Ax3)+3B−Bx−C6Aex−Bx+(3B−C)=ex−x+21=ex−x+21
Comparing the coefficients, constant terms and solving we get,
A=61,B=1,C=18.
Hence, yp=6x3ex+x−18.
The general solution is,
y=(c1+c2x+c3x2)ex+6x3ex+x−18.
Comments