x2y′′−xy′+17y=0 , y1=xsin(4lnx)
Standard form of this equation is y′′−x1y′+x217y=0 .
For equation y′′+P(x)y′+Q(x)y=0 we have formula of second solution:
y2(x)=y1(x)∫y12(x)e−∫P(x)dxdx .
We have that P(x)=−x1, e−∫P(x)dx=e∫x1dx=elnx=x .
y2(x)=xsin(4lnx)∫xsin2(4lnx)1dx
∫xsin2(4lnx)1dx=[ u=4lnx, du=x4dx ]=41∫sin2u1du=−4cotu+C=—4cot(4lnx)+C
y2(x)=−41xsin(4lnx)cot(4lnx).=−41xcos(4lnx)
Answer: y2(x)=−41xcos(4lnx).
Comments
Leave a comment